Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As one of the important materials, nanocrystalline Au (n-Au) has gained numerous interests in recent decades owing to its unique properties and promising applications. However, most of the current n-Au thin films are supported on substrates, limiting the study on their mechanical properties and applications. Therefore, it is urgently desired to develop a new strategy to prepare n-Au materials with superior mechanical strength and hardness. Here, a hard n-Au material with an average grain size of ~ 40 nm is prepared by cold-forging of the unique Au nanoribbons (NRBs) with unconventional 4H phase under high pressure. Systematic characterizations reveal the phase transformation from 4H to face-centered cubic (fcc) phase during the cold compression. Impressively, the compressive yield strength and Vickers hardness (HV) of the prepared n-Au material reach ~ 140.2 MPa and ~ 1.0 GPa, which are 4.2 and 2.2 times of the microcrystalline Au foil, respectively. This work demonstrates that the combination of high-pressure cold-forging and the in-situ 4H-to-fcc phase transformation can effectively inhibit the grain growth in the obtained n-Au materials, leading to the formation of novel hard n-Au materials. Our strategy opens up a new avenue for the preparation of nanocrystalline metals with superior mechanical property.
Cantwell, P. R.; Tang, M.; Dillon, S. J.; Luo, J.; Rohrer, G. S.; Harmer, M. P. Grain boundary complexions. Acta Mater. 2014, 62, 1–48.
Sun, L. G.; Wu, G.; Wang, Q.; Lu, J. Nanostructural metallic materials: Structures and mechanical properties. Mater. Today 2020, 38, 114–135.
Van Swygenhoven, H.; Weertman, J. R. Deformation in nanocrystalline metals. Mater. Today 2006, 9, 24–31.
Kumar, K. S.; Van Swygenhoven, H.; Suresh, S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 2003, 51, 5743–5774.
Dao, M.; Lu, L.; Asaro, R. J.; De Hosson, J. T. M.; Ma, E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 2007, 55, 4041–4065.
Fang, Z. Z.; Paramore, J. D.; Sun, P.; Chandran, K. S. R.; Zhang, Y.; Xia, Y.; Cao, F.; Koopman, M.; Free, M. Powder metallurgy of titanium-past, present, and future. Int. Mater. Rev. 2018, 63, 407–459.
Segal, V. M. Engineering and commercialization of equal channel angular extrusion (ECAE). Mater. Sci. Eng. A 2004, 386, 269–276.
Lu, L.; Shen, Y. F.; Chen, X. H.; Qian, L. H.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 2004, 304, 422–426.
Okuda, S.; Tang, F. Thermal stability of nanocrystalline gold prepared by gas deposition method. Nanostruct. Mater. 1995, 6, 585–588.
Sakai, S.; Tanimoto, H.; Mizubayashi, H. Mechanical behavior of high-density nanocrystalline gold prepared by gas deposition method. Acta Mater. 1998, 47, 211–217.
Tanimoto, H.; Fujita, H.; Mizubayashi, H.; Sasaki, Y.; Kita, E.; Okuda, S. AFM observation of nanocrystalline Au prepared by a gas deposition method. Mater. Sci. Eng. A 1996, 217−218, 108–111.
Chen, C. Y.; Yoshiba, M.; Nagoshi, T.; Chang, T. F. M.; Yamane, D.; Machida, K.; Masu, K.; Sone, M. Pulse electroplating of ultra-fine grained Au films with high compressive strength. Electrochem. Commun. 2016, 67, 51–54.
Tian, Y. J.; Xu, B.; Yu, D. L.; Ma, Y. M.; Wang, Y. B.; Jiang, Y. B.; Hu, W. T.; Tang, C. C.; Gao, Y. F.; Luo, K. et al. Ultrahard nanotwinned cubic boron nitride. Nature 2013, 493, 385–388.
Huang, Q. Yu, D. L.; Xu, B.; Hu, W. T.; Ma, Y. M.; Wang, Y. B.; Zhao, Z. S.; Wen, B.; He, J. L.; Liu, Z. Y. et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 2014, 510, 250–253.
Shi, Y. F.; Lyu, Z.; Zhao, M.; Chen, R. H.; Nguyen, Q. N.; Xia, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735.
Lu, S. Y.; Liang, J. Z.; Long, H. W.; Li, H. X.; Zhou, X. C.; He, Z.; Chen, Y.; Sun, H. Y.; Fan, Z. X; Zhang, H. Crystal phase control of gold nanomaterials by wet-chemical synthesis. Acc. Chem. Res. 2020, 53, 2106–2118.
Fan, Z. X.; Huang, X.; Chen, Y.; Huang, W.; Zhang, H. Facile synthesis of gold nanomaterials with unusual crystal structures. Nat. Protoc. 2017, 12, 2367–2376.
Zhang, Y.; Hu, B.; Cao, X. M.; Luo, L.; Xiong, Y.; Wang, Z. P.; Hong, X.; Ding, S. Y. β-Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities. Nano Res. 2021, 14, 1018–1025.
Ding, S. J.; Ma, L.; Feng, J. R.; Chen, Y. L.; Yang, D. J.; Wang, Q. Q. Surface-roughness-adjustable Au nanorods with strong plasmon absorption and abundant hotspots for improved SERS and photothermal performances. Nano Res. 2022, 15, 2715–2721.
Yan, X. N.; Chen, Q.; Song, Q.; Huo, Z. Y.; Zhang, N.; Ma, M. M. Continuous mechanical tuning of plasmonic nanoassemblies for tunable and selective SERS platforms. Nano Res. 2021, 14, 275–284.
Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.
Ge, Y. Y.; Shi, Z. Y.; Tan, C. L.; Chen, Y.; Cheng, H. F.; He, Q. Y.; Zhang, H. Two-dimensional nanomaterials with unconventional phases. Chem 2020, 6, 1237–1253.
Liu, J. W.; Huang, J. T.; Niu, W. X.; Tan, C. L.; Zhang, H. Unconventional-phase crystalline materials constructed from multiscale building blocks. Chem. Rev. 2021, 121, 5830–5888.
Sheng, B. B.; Cao, D. F.; Shou, H. W.; Moses, O. A.; Xu, W. J.; Xia, Y. J.; Zhou, Y. Z.; Wang, H. J.; Wan, P.; Zhu, S. et al. Support induced phase engineering toward superior electrocatalyst. Nano Res. 2022, 15, 1831–1837.
Fan, Z. X.; Bosman, M.; Huang, X.; Huang, D.; Yu, Y.; Ong, K. P.; Akimov, Y. A.; Wu, L.; Li, B.; Wu, J. et al. Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 2015, 6, 7684.
Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292.
Lu, X. M.; Tuan, H. Y.; Korgel, B. A.; Xia, Y. N. Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chem.—Eur. J. 2008, 14, 1584–1591.
Mao, H. K.; Xu, J.; Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. Solid Earth 1986, 91, 4673–4676.
Hammersley, A. P.; Svensson, S. O.; Hanfland, M.; Fitch, A. N.; Hausermann, D. Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Press. Res. 1996, 14, 235–248.
Toby, B. H.; Von Dreele, R. B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystall. 2013, 46, 544–549.
Li, Q.; Niu, W. X.; Liu, X. C.; Chen, Y.; Wu, X. T.; Wen, X. D.; Wang, Z. W.; Zhang, H.; Quan, Z. W. Pressure-induced phase engineering of gold nanostructures. J. Am. Chem. Soc. 2018, 140, 15783–15790.
Li, P. F.; Han, Y.; Zhou, X.; Fan, Z. X.; Xu, S.; Cao, K.; Meng, F. L.; Gao, L. B.; Song, J.; Zhang, H. et al. Thermal effect and Rayleigh instability of ultrathin 4H hexagonal gold nanoribbons. Matter 2020, 2, 658–665.
Birch, F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. Geophys. Res. Solid Earth 1978, 83, 1257–1268.
Shim, S. H.; Duffy, T. S.; Takemura, K. Equation of state of gold and its application to the phase boundaries near 660 km depth in Earth’s mantle. Earth Planet. Sci. Lett. 2002, 203, 729–739.
Ma, P.; Zou, C. M.; Wang, H. W.; Scudino, S.; Fu, B. G.; Wei, Z. J.; Kühn, U.; Eckert, J. Effects of high pressure and SiC content on microstructure and precipitation kinetics of Al-20Si alloy. J. Alloys Compd. 2014, 586, 639–644.
Wang, H. W.; Zhu, D. D.; Zou, C. M.; Wei, Z. J. Evolution of the microstructure and nanohardness of Ti-48 at.% Al alloy solidified under high pressure. Mater. Des. 2012, 34, 488–493.
Chen, B.; Lutker, K.; Raju, S. V.; Yan, J. Y.; Kanitpanyacharoen, W.; Lei, J. L.; Yang, S. Z.; Wenk, H. R.; Mao, H. K.; Williams, Q. Texture of nanocrystalline nickel: Probing the lower size limit of dislocation activity. Science 2012, 338, 1448–1451.
Zhou, X. L.; Feng, Z. Q.; Zhu, L. L.; Xu, J. N.; Miyagi, L.; Dong, H. L.; Sheng, H. W.; Wang, Y. J.; Li, Q.; Ma, Y. M. et al. High-pressure strengthening in ultrafine-grained metals. Nature 2020, 579, 67–72.
Weertman, J. R. Hall−Petch strengthening in nanocrystalline metals. Mater. Sci. Eng. A 1993, 166, 161–167.
Mecking, H.; Kocks, U. F. Kinetics of flow and strain-hardening. Acta Metall. 1981, 29, 1865–1875.
Poniatowski, M.; Clasing, M. Dispersion hardened gold. Gold Bull. 1972, 5, 34–36.
Gupta, R. K.; Kumar, V. A.; Mathew, C.; Rao, G. S. Strain hardening of titanium alloy Ti6Al4V sheets with prior heat treatment and cold working. Mater. Sci. Eng. A 2016, 662, 537–550.
Edalati, K.; Horita, Z. High-pressure torsion of pure metals: Influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness. Acta Mater. 2011, 59, 6831–6836.
Du Toit, M.; Van Der Lingen, E.; Glaner, L.; Süss, R. The development of a novel gold alloy with 995 fineness and increased hardness. Gold Bull. 2002, 35, 46–52.
Greer, J. R.; Oliver, W. C.; Nix, W. D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 2005, 53, 1821–1830.