AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hard nanocrystalline gold materials prepared via high-pressure phase transformation

Chenlong Xie1Wenxin Niu2,3Penghui Li1Yiyao Ge4Jiawei Liu2Zhanxi Fan4,5,6Xiaoxiao Liu1Ye Chen7Ming Zhou2Zihe Li1Mengdong Ma1Yonghai Yue8Jing Wang9Li Zhu1Kun Luo1Yang Zhang1Yingju Wu1Lin Wang1Bo Xu1Hua Zhang4,5,6 ( )Zhisheng Zhao1( )Yongjun Tian1( )
Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Department of Chemistry, City University of Hong Kong, Hong Kong, China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100190, China
Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Graphical Abstract

Nanocrystalline Au (n-Au) materials are prepared via high-pressure cold-forging of metastable 4H Au nanoribbons (NRBs). The combination of high-pressure cold-forging and in-situ 4H-to-face-centered cubic (fcc) phase transformation can effectively inhibit the grain growth in the obtained n-Au, leading to the formation of novel hard n-Au materials. Our strategy opens up a new avenue for the preparation of nanocrystalline metals with superior mechanical property.

Abstract

As one of the important materials, nanocrystalline Au (n-Au) has gained numerous interests in recent decades owing to its unique properties and promising applications. However, most of the current n-Au thin films are supported on substrates, limiting the study on their mechanical properties and applications. Therefore, it is urgently desired to develop a new strategy to prepare n-Au materials with superior mechanical strength and hardness. Here, a hard n-Au material with an average grain size of ~ 40 nm is prepared by cold-forging of the unique Au nanoribbons (NRBs) with unconventional 4H phase under high pressure. Systematic characterizations reveal the phase transformation from 4H to face-centered cubic (fcc) phase during the cold compression. Impressively, the compressive yield strength and Vickers hardness (HV) of the prepared n-Au material reach ~ 140.2 MPa and ~ 1.0 GPa, which are 4.2 and 2.2 times of the microcrystalline Au foil, respectively. This work demonstrates that the combination of high-pressure cold-forging and the in-situ 4H-to-fcc phase transformation can effectively inhibit the grain growth in the obtained n-Au materials, leading to the formation of novel hard n-Au materials. Our strategy opens up a new avenue for the preparation of nanocrystalline metals with superior mechanical property.

Electronic Supplementary Material

Download File(s)
12274_2022_4226_MOESM1_ESM.pdf (1,001.7 KB)

References

1

Cantwell, P. R.; Tang, M.; Dillon, S. J.; Luo, J.; Rohrer, G. S.; Harmer, M. P. Grain boundary complexions. Acta Mater. 2014, 62, 1–48.

2

Sun, L. G.; Wu, G.; Wang, Q.; Lu, J. Nanostructural metallic materials: Structures and mechanical properties. Mater. Today 2020, 38, 114–135.

3

Van Swygenhoven, H.; Weertman, J. R. Deformation in nanocrystalline metals. Mater. Today 2006, 9, 24–31.

4

Kumar, K. S.; Van Swygenhoven, H.; Suresh, S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 2003, 51, 5743–5774.

5
Erb, U.; Palumbo, G.; McCrea, J. L. The processing of bulk nanocrystalline metals and alloys by electrodeposition. In Nanostructured Metals and Alloys; Whang, S. H., Ed.; Oxford: Woodhead Publishing Limited, 2011; pp 118–151.
6

Dao, M.; Lu, L.; Asaro, R. J.; De Hosson, J. T. M.; Ma, E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 2007, 55, 4041–4065.

7

Fang, Z. Z.; Paramore, J. D.; Sun, P.; Chandran, K. S. R.; Zhang, Y.; Xia, Y.; Cao, F.; Koopman, M.; Free, M. Powder metallurgy of titanium-past, present, and future. Int. Mater. Rev. 2018, 63, 407–459.

8

Segal, V. M. Engineering and commercialization of equal channel angular extrusion (ECAE). Mater. Sci. Eng. A 2004, 386, 269–276.

9

Lu, L.; Shen, Y. F.; Chen, X. H.; Qian, L. H.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 2004, 304, 422–426.

10

Okuda, S.; Tang, F. Thermal stability of nanocrystalline gold prepared by gas deposition method. Nanostruct. Mater. 1995, 6, 585–588.

11

Sakai, S.; Tanimoto, H.; Mizubayashi, H. Mechanical behavior of high-density nanocrystalline gold prepared by gas deposition method. Acta Mater. 1998, 47, 211–217.

12

Tanimoto, H.; Fujita, H.; Mizubayashi, H.; Sasaki, Y.; Kita, E.; Okuda, S. AFM observation of nanocrystalline Au prepared by a gas deposition method. Mater. Sci. Eng. A 1996, 217−218, 108–111.

13

Chen, C. Y.; Yoshiba, M.; Nagoshi, T.; Chang, T. F. M.; Yamane, D.; Machida, K.; Masu, K.; Sone, M. Pulse electroplating of ultra-fine grained Au films with high compressive strength. Electrochem. Commun. 2016, 67, 51–54.

14

Tian, Y. J.; Xu, B.; Yu, D. L.; Ma, Y. M.; Wang, Y. B.; Jiang, Y. B.; Hu, W. T.; Tang, C. C.; Gao, Y. F.; Luo, K. et al. Ultrahard nanotwinned cubic boron nitride. Nature 2013, 493, 385–388.

15

Huang, Q. Yu, D. L.; Xu, B.; Hu, W. T.; Ma, Y. M.; Wang, Y. B.; Zhao, Z. S.; Wen, B.; He, J. L.; Liu, Z. Y. et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 2014, 510, 250–253.

16

Shi, Y. F.; Lyu, Z.; Zhao, M.; Chen, R. H.; Nguyen, Q. N.; Xia, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735.

17

Lu, S. Y.; Liang, J. Z.; Long, H. W.; Li, H. X.; Zhou, X. C.; He, Z.; Chen, Y.; Sun, H. Y.; Fan, Z. X; Zhang, H. Crystal phase control of gold nanomaterials by wet-chemical synthesis. Acc. Chem. Res. 2020, 53, 2106–2118.

18

Fan, Z. X.; Huang, X.; Chen, Y.; Huang, W.; Zhang, H. Facile synthesis of gold nanomaterials with unusual crystal structures. Nat. Protoc. 2017, 12, 2367–2376.

19

Zhang, Y.; Hu, B.; Cao, X. M.; Luo, L.; Xiong, Y.; Wang, Z. P.; Hong, X.; Ding, S. Y. β-Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities. Nano Res. 2021, 14, 1018–1025.

20

Ding, S. J.; Ma, L.; Feng, J. R.; Chen, Y. L.; Yang, D. J.; Wang, Q. Q. Surface-roughness-adjustable Au nanorods with strong plasmon absorption and abundant hotspots for improved SERS and photothermal performances. Nano Res. 2022, 15, 2715–2721.

21

Yan, X. N.; Chen, Q.; Song, Q.; Huo, Z. Y.; Zhang, N.; Ma, M. M. Continuous mechanical tuning of plasmonic nanoassemblies for tunable and selective SERS platforms. Nano Res. 2021, 14, 275–284.

22

Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

23

Ge, Y. Y.; Shi, Z. Y.; Tan, C. L.; Chen, Y.; Cheng, H. F.; He, Q. Y.; Zhang, H. Two-dimensional nanomaterials with unconventional phases. Chem 2020, 6, 1237–1253.

24

Liu, J. W.; Huang, J. T.; Niu, W. X.; Tan, C. L.; Zhang, H. Unconventional-phase crystalline materials constructed from multiscale building blocks. Chem. Rev. 2021, 121, 5830–5888.

25
Liang, J. Z.; Ge, Y. Y.; He, Z.; Yun, Q. B.; Liu, G. G.; Lu, S. Y.; Zhai, L.; Huang, B.; Zhang, H. Wet-chemical synthesis and applications of amorphous metal-containing nanomaterials. Nano Res. in press, https://doi.org/10.1007/s12274-021-4007-6.
26

Sheng, B. B.; Cao, D. F.; Shou, H. W.; Moses, O. A.; Xu, W. J.; Xia, Y. J.; Zhou, Y. Z.; Wang, H. J.; Wan, P.; Zhu, S. et al. Support induced phase engineering toward superior electrocatalyst. Nano Res. 2022, 15, 1831–1837.

27

Fan, Z. X.; Bosman, M.; Huang, X.; Huang, D.; Yu, Y.; Ong, K. P.; Akimov, Y. A.; Wu, L.; Li, B.; Wu, J. et al. Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 2015, 6, 7684.

28

Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292.

29

Lu, X. M.; Tuan, H. Y.; Korgel, B. A.; Xia, Y. N. Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chem.—Eur. J. 2008, 14, 1584–1591.

30

Mao, H. K.; Xu, J.; Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. Solid Earth 1986, 91, 4673–4676.

31

Hammersley, A. P.; Svensson, S. O.; Hanfland, M.; Fitch, A. N.; Hausermann, D. Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Press. Res. 1996, 14, 235–248.

32

Toby, B. H.; Von Dreele, R. B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystall. 2013, 46, 544–549.

33

Li, Q.; Niu, W. X.; Liu, X. C.; Chen, Y.; Wu, X. T.; Wen, X. D.; Wang, Z. W.; Zhang, H.; Quan, Z. W. Pressure-induced phase engineering of gold nanostructures. J. Am. Chem. Soc. 2018, 140, 15783–15790.

34

Li, P. F.; Han, Y.; Zhou, X.; Fan, Z. X.; Xu, S.; Cao, K.; Meng, F. L.; Gao, L. B.; Song, J.; Zhang, H. et al. Thermal effect and Rayleigh instability of ultrathin 4H hexagonal gold nanoribbons. Matter 2020, 2, 658–665.

35

Birch, F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. Geophys. Res. Solid Earth 1978, 83, 1257–1268.

36

Shim, S. H.; Duffy, T. S.; Takemura, K. Equation of state of gold and its application to the phase boundaries near 660 km depth in Earth’s mantle. Earth Planet. Sci. Lett. 2002, 203, 729–739.

37

Ma, P.; Zou, C. M.; Wang, H. W.; Scudino, S.; Fu, B. G.; Wei, Z. J.; Kühn, U.; Eckert, J. Effects of high pressure and SiC content on microstructure and precipitation kinetics of Al-20Si alloy. J. Alloys Compd. 2014, 586, 639–644.

38

Wang, H. W.; Zhu, D. D.; Zou, C. M.; Wei, Z. J. Evolution of the microstructure and nanohardness of Ti-48 at.% Al alloy solidified under high pressure. Mater. Des. 2012, 34, 488–493.

39

Chen, B.; Lutker, K.; Raju, S. V.; Yan, J. Y.; Kanitpanyacharoen, W.; Lei, J. L.; Yang, S. Z.; Wenk, H. R.; Mao, H. K.; Williams, Q. Texture of nanocrystalline nickel: Probing the lower size limit of dislocation activity. Science 2012, 338, 1448–1451.

40

Zhou, X. L.; Feng, Z. Q.; Zhu, L. L.; Xu, J. N.; Miyagi, L.; Dong, H. L.; Sheng, H. W.; Wang, Y. J.; Li, Q.; Ma, Y. M. et al. High-pressure strengthening in ultrafine-grained metals. Nature 2020, 579, 67–72.

41

Weertman, J. R. Hall−Petch strengthening in nanocrystalline metals. Mater. Sci. Eng. A 1993, 166, 161–167.

42
Newby, J. Metals Handbook, Volume 8: Mechanical Testing, 9th ed.; ASM International: Materials Park, 1985.
43

Mecking, H.; Kocks, U. F. Kinetics of flow and strain-hardening. Acta Metall. 1981, 29, 1865–1875.

44

Poniatowski, M.; Clasing, M. Dispersion hardened gold. Gold Bull. 1972, 5, 34–36.

45

Gupta, R. K.; Kumar, V. A.; Mathew, C.; Rao, G. S. Strain hardening of titanium alloy Ti6Al4V sheets with prior heat treatment and cold working. Mater. Sci. Eng. A 2016, 662, 537–550.

46

Edalati, K.; Horita, Z. High-pressure torsion of pure metals: Influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness. Acta Mater. 2011, 59, 6831–6836.

47
Grimwade, M. The metallurgy of gold. Interdiscip. Sci. Rev 1992, 17, 371–381.
48

Du Toit, M.; Van Der Lingen, E.; Glaner, L.; Süss, R. The development of a novel gold alloy with 995 fineness and increased hardness. Gold Bull. 2002, 35, 46–52.

49

Greer, J. R.; Oliver, W. C.; Nix, W. D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 2005, 53, 1821–1830.

Nano Research
Pages 6678-6685
Cite this article:
Xie C, Niu W, Li P, et al. Hard nanocrystalline gold materials prepared via high-pressure phase transformation. Nano Research, 2022, 15(7): 6678-6685. https://doi.org/10.1007/s12274-022-4226-5
Topics:

1263

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 10 February 2022
Accepted: 10 February 2022
Published: 10 February 2022
© Tsinghua University Press 2022
Return