AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Versatile band structure and electron–phonon coupling in layered PtSe2 with strong interlayer interaction

Junbo He1Xudan Zhu1Weiming Liu1Ertao Hu2Jianlu Wang3Rongjun Zhang1,3,4,5( )
Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Institute of Optoelectronics, Fudan University, Shanghai 200433, China
Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
Yiwu Research Institute of Fudan University, Yiwu 322000, China
Show Author Information

Graphical Abstract

The evolution of electronic band structures as well as electron–phonon (e–ph) interaction determined by strong interlayer coupling of layered PtSe2 is investigated by optical methods.

Abstract

The large tunability in the band structure is ubiquitous in two-dimensional (2D) materials, and PtSe2 is not an exception, which has attracted considerable attention in electronic and optoelectronic applications due to its high carrier mobility and long-term air-stability. Such dimensional dependent properties are closely related to the evolution of electronic band structures. Critical points (CPs), the extrema or saddle points of electronic bands, are the cornerstone of condensed-matter physics and fundamentally determine the optical and transport phenomena of the layered PtSe2. Here, we have experimentally revealed the detailed electronic structures in layered PtSe2, including the CPs in the Brillouin zones (BZs), by means of reflection contrast spectroscopy and spectroscopic ellipsometry (SE). There are three critical points in the BZs attributed to the excitonic transition, quasi-particle band gap, and the band nesting effect related transition, respectively. Three CPs show red-shifting trends with increasing layer number under the mechanism of strong interlayer coupling. We have further revealed the electron–phonon (e–ph) interaction in such layered material, utilizing temperature-dependent absorbance spectroscopy. The strength of e–ph interaction and the average phonon energy also decline with the increasement of layer number. Our findings give a deep understanding to the physics of the layer-dependent evolution of the electronic structure of PtSe2, potentially leading to applications in optoelectronics and electronic devices.

Electronic Supplementary Material

Download File(s)
12274_2022_4232_MOESM1_ESM.pdf (482.2 KB)

References

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Yan, H. G.; Li, X. S.; Chandra, B.; Tulevski, G.; Wu, Y. Q.; Freitag, M.; Zhu, W. J.; Avouris, P.; Xia, F. N. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 2012, 7, 330–334.

3

Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 2014, 9, 268–272.

4

Salehzadeh, O.; Djavid, M.; Tran, N. H.; Shih, I.; Mi, Z. T. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett. 2015, 15, 5302–5306.

5

Lee, J.; Mak, K. F.; Shan, J. Electrical control of the valley hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 2016, 11, 421–425.

6

Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

7

He, Z. Y.; Sheng, Y. W.; Rong, Y. M.; Lee, G. D.; Li, J.; Warner, J. H. Layer-dependent modulation of tungsten disulfide photoluminescence by lateral electric fields. ACS Nano 2015, 9, 2740–2748.

8

Li, X. L.; Han, W. P.; Wu, J. B.; Qiao, X. F.; Zhang, J.; Tan, P. H. Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater. 2017, 27, 1604468.

9

Li, H.; Wu, J.; Yin, Z. Y.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075.

10

Zhang, J.; Wang, J. H.; Chen, P.; Sun, Y.; Wu, S.; Jia, Z. Y.; Lu, X. B.; Yu, H.; Chen, W.; Zhu, J. Q. et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 2016, 28, 1950–1956.

11

Park, H.; Shin, G. H.; Lee, K. J.; Choi, S. Y. Probing temperature-dependent interlayer coupling in a MoS2/h-BN heterostructure. Nano Res. 2020, 13, 576–582.

12

Zhao, W. J.; Ribeiro, R. M.; Eda, G. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets. Acc. Chem. Res. 2015, 48, 91–99.

13

Zhao, Y. D.; Qiao, J. S.; Yu, Z. H.; Yu, P.; Xu, K.; Lau, S. P.; Zhou, W.; Liu, Z.; Wang, X. R.; Ji, W. et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 2017, 29, 1604230.

14

Villaos, R. A. B.; Crisostomo, C. P.; Huang, Z. Q.; Huang, S. M.; Padama, A. A. B.; Albao, M. A.; Lin, H.; Chuang, F. C. Thickness dependent electronic properties of Pt dichalcogenides. npj 2D Mater. Appl. 2019, 3, 2.

15

Wang, G. Z.; Wang, Z. Z.; McEvoy, N.; Fan, P.; Blau, W. J. Layered PtSe2 for sensing, photonic, and (opto-)electronic applications. Adv. Mater. 2021, 33, 2004070.

16

Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.

17

Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797.

18

Guo, G. Y.; Liang, W. Y. The electronic structures of platinum dichalcogenides: PtS2, PtSe2 and PtTe2. J. Phys. C: Solid State Phys. 1986, 19, 995–1008.

19

Wang, Y. L.; Li, L. F.; Yao, W.; Song, S. R.; Sun, J. T.; Pan, J. B.; Ren, X.; Li, C.; Okunishi, E.; Wang, Y. Q. et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 2015, 15, 4013–4018.

20

Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.

21

Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095.

22

Yan, M. Z.; Huang, H. Q.; Zhang, K. N.; Wang, E. Y.; Yao, W.; Deng, K.; Wan, G. L.; Zhang, H. Y.; Arita, M.; Yang, H. T. et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2. Nat. Commun. 2017, 8, 257.

23

Yan, M. Z.; Wang, E. Y.; Zhou, X.; Zhang, G. Q.; Zhang, H. Y.; Zhang, K. N.; Yao, W.; Lu, N. P.; Yang, S. Z.; Wu, S. L. et al. High quality atomically thin PtSe2 films grown by molecular beam epitaxy. 2D Mater. 2017, 4, 045015.

24

Du, L. J.; Zhang, T. T.; Liao, M. Z.; Liu, G. B.; Wang, S. P.; He, R.; Ye, Z. P.; Yu, H.; Yang, R.; Shi, D. X. et al. Temperature-driven evolution of critical points, interlayer coupling, and layer polarization in bilayer MoS2. Phys. Rev. B 2018, 97, 165410.

25

Zheng, H. S.; Choi, Y.; Baniasadi, F.; Hu, D. K.; Jiao, L. Y.; Park, K.; Tao, C. G. Visualization of point defects in ultrathin layered 1T-PtSe2. 2D Mater. 2019, 6, 041005.

26

Zhang, L.; Yang, T.; Sahdan, M. F.; Arramel; Xu, W. S.; Xing, K. J.; Feng, Y. P.; Zhang, W. J.; Wang, Z.; Wee, A. T. S. Precise layer-dependent electronic structure of MBE-grown PtSe2. Adv. Electron. Mater. 2021, 7, 2100559.

27

Li, J. F.; Kolekar, S.; Ghorbani-Asl, M.; Lehnert, T.; Biskupek, J.; Kaiser, U.; Krasheninnikov, A. V.; Batzill, M. Layer-dependent band gaps of platinum dichalcogenides. ACS Nano 2021, 15, 13249–13259.

28

Nayak, P. K.; Yeh, C. H.; Chen, Y. C.; Chiu, P. W. Layer-dependent optical conductivity in atomic thin WS2 by reflection contrast spectroscopy. ACS Appl. Mater. Interfaces 2014, 6, 16020–16026.

29

Wang, Z. F.; Shan, J.; Mak, K. F. Valley- and spin-polarized landau levels in monolayer WSe2. Nat. Nanotechnol. 2017, 12, 144–149.

30

Zhu, X. D.; He, J. B.; Zhang, R. J.; Cong, C. X.; Zheng, Y. X.; Zhang, H.; Zhang, S. W.; Chen, L. Y. Effects of dielectric screening on the excitonic and critical points properties of WS2/MoS2 heterostructures. Nanoscale 2020, 12, 23732–23739.

31

Zhu, X. D.; He, J. B.; Zhang, R. J.; Cong, C. X.; Zheng, Y. X.; Zhang, H.; Wang, S. Y.; Zhao, H. B.; Zhu, M. P.; Zhang, S. W. et al. Effects of interlayer coupling on the excitons and electronic structures of WS2/HBN/MoS2 van Der Waals heterostructures. Nano Res. 2022, 15, 2674–2681.

32

Fei, Z.; Shi, Y.; Pu, L.; Gao, F.; Liu, Y.; Sheng, L.; Wang, B. G.; Zhang, R.; Zheng, Y. D. High-energy optical conductivity of graphene determined by reflection contrast spectroscopy. Phys. Rev. B 2008, 78, 201402.

33

Mak, K. F.; Sfeir, M. Y.; Wu, Y.; Lui, C. H.; Misewich, J. A.; Heinz, T. F. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 2008, 101, 196405.

34

Roddaro, S.; Pingue, P.; Piazza, V.; Pellegrini, V.; Beltram, F. The optical visibility of graphene: Interference colors of ultrathin graphite on SiO2. Nano Lett. 2007, 7, 2707–2710.

35

Horng, J.; Stroucken, T.; Zhang, L.; Paik, E. Y.; Deng, H.; Koch, S. W. Observation of interlayer excitons in MoSe2 single crystals. Phys. Rev. B 2018, 97, 241404.

36

Yang, M. M.; Wang, L. L.; Hu, G. F.; Chen, X.; Gong, P. L.; Cong, X.; Liu, Y.; Yang, Y. B.; Li, X. L.; Zhao, X. H. et al. Optical identification of interlayer coupling of graphene/MoS2 van Der Waals heterostructures. Nano Res. 2021, 14, 2241–2246.

37

Haastrup, S.; Strange, M.; Pandey, M.; Deilmann, T.; Schmidt, P. S.; Hinsche, N. F.; Gjerding, M. N.; Torelli, D.; Larsen, P. M.; Riis-Jensen, A. C. et al. The computational 2D materials database: High-throughput modeling and discovery of atomically thin crystals. 2D Mater. 2018, 5, 042002.

38

He, J. B.; Jiang, W.; Zhu, X. D.; Zhang, R. J.; Wang, J. L.; Zhu, M. P.; Wang, S. Y.; Zheng, Y. X.; Chen, L. Y. Optical properties of thickness-controlled PtSe2 thin films studied via spectroscopic ellipsometry. Phys. Chem. Chem. Phys. 2020, 22, 26383–26389.

39

Chen, X.; Zhang, S. F.; Wang, L.; Huang, Y. F.; Liu, H. Y.; Huang, J. W.; Dong, N. N.; Liu, W. M.; Kislyakov, I. M.; Nunzi, J. M. et al. Direct observation of interlayer coherent acoustic phonon dynamics in bilayer and few-layer PtSe2. Photonics Res. 2019, 7, 1416–1424.

40

Wang, G. Z.; Wang, K. P.; McEvoy, N.; Bai, Z. Y.; Cullen, C. P.; Murphy, C. N.; McManus, J. B.; Magan, J. J.; Smith, C. M.; Duesberg, G. S. et al. Ultrafast carrier dynamics and bandgap renormalization in layered PtSe2. Small 2019, 15, 1902728.

41

Bae, S.; Nah, S.; Lee, D.; Sajjad, M.; Singh, N.; Kang, K. M.; Kim, S.; Kim, G. J.; Kim, J.; Baik, H. et al. Exciton-dominated ultrafast optical response in atomically thin PtSe2. Small 2021, 17, 2103400.

42

Sajjad, M.; Singh, N. Schwingenschlögl, U. Strongly bound excitons in monolayer PtS2 and PtSe2. Appl. Phys. Lett. 2018, 112, 043101.

43

Carvalho, A.; Ribeiro, R. M.; Castro Neto, A. H. Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Phys. Rev. B 2013, 88, 115205.

44

Yim, C.; Lee, K.; McEvoy, N.; O’Brien, M.; Riazimehr, S.; Berner, N. C.; Cullen, C. P.; Kotakoski, J.; Meyer, J. C.; Lemme, M. C. et al. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano 2016, 10, 9550–9558.

45

Shawkat, M. S.; Chung, H. S.; Dev, D.; Das, S.; Roy, T.; Jung, Y. Two-dimensional/three-dimensional schottky junction photovoltaic devices realized by the direct CVD growth of vdW 2D PtSe2 layers on silicon. ACS Appl. Mater. Interfaces 2019, 11, 27251–27258.

46

Lautenschlager, P.; Garriga, M.; Vina, L.; Cardona, M. Temperature dependence of the dielectric function and interband critical points in silicon. Phys. Rev. B 1987, 36, 4821–4830.

47

Li, W.; Birdwell, A. G.; Amani, M.; Burke, R. A.; Ling, X.; Lee, Y. H.; Liang, X. L.; Peng, L. M.; Richter, C. A.; Kong, J. et al. Broadband optical properties of large-area monolayer CVD molybdenum disulfide. Phys. Rev. B 2014, 90, 195434.

48

Nguyen, H. T.; Kim, T. J.; Park, H. G.; Le, V. L.; Nguyen, X. A.; Koo, D.; Lee, C. H.; Cuong, D. D.; Hong, S. C.; Kim, Y. D. Temperature dependence of optical properties of monolayer WS2 by spectroscopic ellipsometry. Appl. Surf. Sci. 2020, 511, 145503.

49

Ansari, L.; Monaghan, S.; McEvoy, N.; Coileáin, C. Ó.; Cullen, C. P.; Lin, J.; Siris, R.; Stimpel-Lindner, T.; Burke, K. F.; Mirabelli, G. et al. Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400°C. npj 2D Mater. Appl. 2019, 3, 33.

50

Shi, Y. J.; Zhang, R. J.; Zheng, H.; Li, D. H.; Wei, W.; Chen, X.; Sun, Y.; Wei, Y. F.; Lu, H. L.; Dai, N. et al. Optical constants and band gap evolution with phase transition in sub-20-Nm-thick TiO2 films prepared by ALD. Nanoscale Res. Lett. 2017, 12, 243.

51

Yoffe, A. D. Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 2002, 51, 799–890.

52

Mudd, G. W.; Svatek, S. A.; Ren, T. H.; Patanè, A.; Makarovsky, O.; Eaves, L.; Beton, P. H.; Kovalyuk, Z. D.; Lashkarev, G. V.; Kudrynskyi, Z. R. et al. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Adv. Mater. 2013, 25, 5714–5718.

53

Zhao, Y. D.; Qiao, J. S.; Yu, P.; Hu, Z. X.; Lin, Z. Y.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399–2407.

54

Molas, M. R.; Nogajewski, K.; Slobodeniuk, A. O.; Binder, J.; Bartos, M.; Potemski, M. The optical response of monolayer, few-layer and bulk tungsten disulfide. Nanoscale 2017, 9, 13128–13141.

55

Sun, Y. H.; Luo, S. L.; Zhao, X. G.; Biswas, K.; Li, S. L.; Zhang, L. J. InSe: A two-dimensional material with strong interlayer coupling. Nanoscale 2018, 10, 7991–7998.

56
Olver, F. W.; Lozier, D. W.; Boisvert, R.; Clark, C. W. The NIST Handbook of Mathematical Functions; Cambridge University Press: New York, NY, 2010.
57

Gulo, D. P.; Yeh, H.; Chang, W. H.; Liu, H. L. Temperature-dependent optical and vibrational properties of PtSe2 thin films. Sci. Rep. 2020, 10, 19003.

58

O’Donnell, K. P.; Chen, X. Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. 1991, 58, 2924–2926.

59

Huang, K.; Rhys, A. Theory of light absorption and non-radiative transitions in F-centres. Proc. Roy. Soc. A: Math., Phys. Eng. Sci. 1950, 204, 406–423.

60

Qiu, W. T.; Liang, W. Z.; Guo, J.; Fang, L. M.; Li, N.; Feng, Q. G.; Luo, S. N. Thickness-dependent ultrafast hot carrier and phonon dynamics of PtSe2 films measured with femtosecond transient optical spectroscopy. J. Phys. D: Appl. Phys. 2021, 54, 075102.

61

Kioseoglou, G.; Hanbicki, A. T.; Currie, M.; Friedman, A. L.; Jonker, B. T. Optical polarization and intervalley scattering in single layers of MoS2 and MoSe2. Sci. Rep. 2016, 6, 25041.

62

Arora, A.; Koperski, M.; Nogajewski, K.; Marcus, J.; Faugeras, C.; Potemski, M. Excitonic resonances in thin films of WSe2: From monolayer to bulk material. Nanoscale 2015, 7, 10421–10429.

63

Jiang, W.; Wang, X. D.; Chen, Y.; Wu, G. J.; Ba, K.; Xuan, N. N.; Sun, Y. Y.; Gong, P.; Bao, J. X.; Shen, H. et al. Large-area high quality PtSe2 thin film with versatile polarity. InfoMat 2019, 1, 260–267.

Nano Research
Pages 6613-6619
Cite this article:
He J, Zhu X, Liu W, et al. Versatile band structure and electron–phonon coupling in layered PtSe2 with strong interlayer interaction. Nano Research, 2022, 15(7): 6613-6619. https://doi.org/10.1007/s12274-022-4232-7
Topics:

1352

Views

10

Crossref

11

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 22 December 2021
Revised: 21 January 2022
Accepted: 13 February 2022
Published: 10 March 2022
© Tsinghua University Press 2022
Return