AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

“Nanocompoundsite”: Nano phased polymer dispersed in inorganic matrix via covalent bonds

Xiang Guo1,2,§Pengfei Li1,§Guoming Liu2,3Ye Tian2,4Zongbo Zhang1( )Caihong Xu1,2Lei Jiang4,5
CAS Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (TIPCCAS), Beijing 100190, China
Research Institute for Frontier Science, Beihang University, Beijing 100191, China

§ Xiang Guo and Pengfei Li contributed equally to this work.

Show Author Information

Graphical Abstract

We use SiOx/polydimethylsiloxane (PDMS) to demonstrate a strategy to construct new inorganic–organic “nanocompoundsite”, in which nano phased polymer is dispersed in inorganic matrix via covalent bonds. The introduction of polymer into nanocompoundsite enriches the polymer remarkable enhancement of thermal stability with initial decomposition temperature (Td) increasing over 110 °C.

Abstract

Herein we demonstrate a new strategy to construct inorganic–organic “nanocompoundsite”, i.e., a material that nano phased polymer is dispersed in consecutive inorganic matrix via covalent bonds, which is different from the conventional nanocomposite with polymer as matrix and inorganic nanomaterials as dispersed phase. As a representative system, SiOx/polydimethylsiloxane (PDMS) nanocompoundsite was prepared from a polymeric precursor of perhydropolysilazane (PHPS) modified by carbohydroxyl end-capped PDMS (HOC-PDMS), through a room-temperature vacuum ultraviolet (VUV) irradiation manner. By adjusting HOC-PDMS/PHPS ratio below 20%, PDMS fully binds to the PHPS derived SiOx matrix via Si–O–C bond to form the inorganic–organic SiOx/PDMS nanocompoundsite (ISPN) without noticeable phase separation. The introduction of PDMS into ISPN renders its initial decomposition temperature increase over 110 °C. The remarkable enhancement of thermal stability for PDMS is due to the restriction of terminal hydroxyl induced back-biting reaction and main chain degradation by the inorganic matrix and the covalent binding between PDMS and SiOx. This novel strategy can further extend to hydroxyl terminated PDMS, polyethylene glycol, and acrylic resin, with the initial decomposition temperature of each polymer increasing by over 110, 150 and 100 °C, respectively. More importantly, the nanocompoundsite combines the characteristics of inorganic matrix and polymer. The coating based on SiOx/PDMS nanocompoundsite exhibits good flexibility, outstanding interfacial binding strength, ultra-high hardness as well as excellent hydrophobicity.

Electronic Supplementary Material

Download File(s)
12274_2022_4233_MOESM1_ESM.pdf (533.7 KB)

References

1

Nie, G. K.; Li, G. Z.; Wang, L.; Zhang, X. W. Nanocomposites of polymer brush and inorganic nanoparticles: Preparation, characterization and application. Polym. Chem. 2016, 7, 753–769.

2

Mera, G.; Gallei, M.; Bernard, S.; Ionescu, E. Ceramic nanocomposites from tailor-made preceramic polymers. Nanomaterials 2015, 5, 468–540.

3

Ionescu, E.; Kleebe, H. J.; Riedel, R. Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): Preparative approaches and properties. Chem. Soc. Rev. 2012, 41, 5032–5052.

4

Li, Z.; Hu, J. F.; Yang, L.; Zhang, X. Q.; Liu, X. H.; Wang, Z.; Li, Y. W. Integrated POSS-dendrimer nanohybrid materials: Current status and future perspective. Nanoscale 2020, 12, 11395–11415.

5

Pan, C. F.; Markvicka, E. J.; Malakooti, M. H.; Yan, J. J.; Hu, L. M.; Matyjaszewski, K.; Majidi, C. A liquid-metal-elastomer nanocomposite for stretchable dielectric materials. Adv. Mater. 2019, 31, 1900663.

6

Yao, X. Y.; Wang, J.; Jiao, D. J.; Huang, Z. Z.; Mhirsi, O.; Lossada, F.; Chen, L. S.; Haehnle, B.; Kuehne, A. J. C.; Ma, X. et al. Room-temperature phosphorescence enabled through nacre-mimetic nanocomposite design. Adv. Mater. 2021, 33, 2005973.

7

Saveleva, M. S.; Eftekhari, K.; Abalymov, A.; Douglas, T. E. L.; Volodkin, D.; Parakhonskiy, B. V.; Skirtach, A. G. Hierarchy of hybrid materials—The place of inorganics-in-organics in it, their composition and applications. Front. Chem. 2019, 7, 179.

8

Wu, H.; Yang, H. K.; Wang, W. Covalently-linked polyoxometalate-polymer hybrids: Optimizing synthesis, appealing structures and prospective applications. New J. Chem. 2016, 40, 886–897.

9

Sharp, K. G. Inorganic/organic hybrid materials. Adv. Mater. 1998, 10, 1243–1248.

10

Shahadat, M.; Teng, T. T.; Rafatullah, M.; Arshad, M. Titanium-based nanocomposite materials: A review of recent advances and perspectives. Colloids Surf. B Biointerfaces 2015, 126, 121–137.

11

Zou, H.; Wu, S. S.; Shen, J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem. Rev. 2008, 108, 3893–3957.

12

Pinargote, N. W. S.; Smirnov, A.; Peretyagin, N.; Seleznev, A.; Peretyagin, P. Direct ink writing technology (3D printing) of graphene-based ceramic nanocomposites: A review. Nanomaterials 2020, 10, 1300.

13

Wu, H. Q.; Tang, B. B.; Wu, P. Y. Novel ultrafiltration membranes prepared from a multi-walled carbon nanotubes/polymer composite. J. Membr. Sci. 2010, 362, 374–383.

14

Shi, Y. Q.; Liu, C.; Liu, L.; Fu, L. B.; Yu, B.; Lv, Y. C.; Yang, F. Q.; Song, P. A. Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chem. Eng. J. 2019, 378, 122267.

15

Mallakpour, S.; Naghdi, M. Polymer/SiO2 nanocomposites: Production and applications. Prog. Mater. Sci. 2018, 97, 409–447.

16

Novak, B. M. Hybrid nanocomposite materials—Between inorganic glasses and organic polymers. Adv. Mater. 1993, 5, 422–433.

17

Ngoi, K. H.; Wong, J. C.; Chia, C H.; Jin, K. S.; Kim, H.; Kim, H. C.; Kim, H. J.; Ree, M. Inorganic–organic nanocomposite networks: Structure, curing reaction, properties, and hard coating performance. Compos. Sci. Technol. 2022, 218, 109112.

18

Yeh, J. M.; Hsieh, C. F.; Yeh, C. W.; Wu, M. J.; Yang, H. C. Organic base-catalyzed sol-gel route to prepare PMMA-silica hybrid materials. Polym. Int. 2007, 56, 343–349.

19

Yeh, J. M.; Weng, C. J.; Liao, W. J.; Mau, Y. W. Anticorrosively enhanced PMMA-SiO2 hybrid coatings prepared from the sol-gel approach with MSMA as the coupling agent. Surf. Coat. Technol. 2006, 201, 1788–1795.

20

Fu, S. Y.; Zhu, M.; Zhu, Y. F. Organosilicon polymer-derived ceramics: An overview. J. Adv. Ceram. 2019, 8, 457–478.

21

Vakifahmetoglu, C.; Zeydanli, D.; Colombo, P. Porous polymer derived ceramics. Mater. Sci. Eng. R Rep. 2016, 106, 1–30.

22

Kozuka, H.; Nakajima, K.; Uchiyama, H. Superior properties of silica thin films prepared from perhydropolysilazane solutions at room temperature in comparison with conventional alkoxide-derived silica gel films. ACS Appl. Mater. Interfaces 2013, 5, 8329–8336.

23

Li, P. F.; Zhang, Y. L.; Guo, Y. L.; Jiang, L.; Zhang, Z. B.; Xu, C. H. Resistance switching behavior of a perhydropolysilazane-derived SiOx-based memristor. J. Phys. Chem. Lett. 2021, 12, 10728–10734.

24

Li, P. F.; Wang, D.; Zhang, Z. B.; Guo, Y. L.; Jiang, L.; Xu, C. H. Room-temperature, solution-processed SiOx via photochemistry approach for highly flexible resistive switching memory. ACS Appl. Mater. Interfaces 2020, 12, 56186–56194.

25

Zhang, Z. B.; Shao, Z. H.; Luo, Y. M.; An, P. Y.; Zhang, M. Y.; Xu, C. H. Hydrophobic, transparent and hard silicon oxynitride coating from perhydropolysilazane. Polym. Int. 2015, 64, 971–978.

26

Braun, F.; Willner, L.; Hess, M.; Kosfeld, R. Synthesis and characterization of oligosiloxanes with hydroxyalkyl substituents. J. Organomet. Chem. 1989, 366, 53–56.

27

Prager, L.; Wennrich, L.; Heller, R.; Knolle, W.; Naumov, S.; Prager, A.; Decker, D.; Liebe, H.; Buchmeiser, M. R. Vacuum-UV irradiation-based formation of methyl-Si-O-Si networks from poly(1, 1-dimethylsilazane-co-1-methylsilazane). Chem.—Eur. J. 2009, 15, 675–683.

28
Prager L. Dierdorf A. Liebe H. Naumov S. Stojanovic S. Heller R. Wennrich L. Buchmeiser M. R. Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings Chem.—Eur. J. 2007 13 8522 8529 10.1002/chem.200700351

Prager, L.; Dierdorf, A.; Liebe, H.; Naumov, S.; Stojanovic, S.; Heller, R.; Wennrich, L.; Buchmeiser, M. R. Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings. Chem.—Eur. J. 2007, 13, 8522–8529.

29

Ashurbekova, K.; Ashurbekova, K.; Saric, I.; Gobbi, M.; Modin, E.; Chuvilin, A.; Petravic, M.; Abdulagatov, I.; Knez, M. Ultrathin hybrid SiAlCOH dielectric films through ring-opening molecular layer deposition of cyclic tetrasiloxane. Chem. Mater. 2021, 33, 1022–1030.

30

Balestrat, M.; Lale, A.; Bezerra, A. V. A.; Proust, V.; Awin, E. W.; Machado, R. A. F.; Carles, P.; Kumar, R.; Gervais, C.; Bernard, S. In-situ synthesis and characterization of nanocomposites in the Si-Ti-N and Si-Ti-C systems. Molecules 2020, 25, 5236.

31

Je, S. Y.; Son, B. G.; Kim, H. G.; Park, M. Y.; Do, L. M.; Choi, R.; Jeong. J. K. Solution-processable LaZrOx/SiO2 gate dielectric at low temperature of 180 °C for high-performance metal oxide field-effect transistors. ACS Appl. Mater. Interfaces 2014, 6, 18693–18703.

32

Bashouti, M. Y.; Paska, Y.; Puniredd, S. R.; Stelzner, T.; Christiansen, S.; Haick, H. Silicon nanowires terminated with methyl functionalities exhibit stronger Si–C bonds than equivalent 2D surfaces. Phys. Chem. Chem. Phys. 2009, 11, 3845–3848.

33
Stribeck, N. X-ray Scattering of Soft Matter; Springer: Berlin, Heidelberg, 2007.
34

Choi, G. M.; Jin, J.; Shin, D.; Kim, Y. H.; Ko, J. H.; Im, H. G.; Jang, J.; Jang, D.; Bae, B. S. Flexible hard coating: Glass-like wear resistant, yet plastic-like compliant, transparent protective coating for foldable displays. Adv. Mater. 2017, 29, 1700205.

35

Zhang, K. K.; Huang, S. S.; Wang, J. D.; Liu, G. J. Transparent omniphobic coating with glass-like wear resistance and polymer-like bendability. Angew. Chem., Int. Ed. 2019, 58, 12004–12009.

36

Barroso, G.; Döring, M.; Horcher, A.; Kienzle, A.; Motz, G. Polysilazane-based coatings with anti-adherent properties for easy release of plastics and composites from metal molds. Adv. Mater. Interfaces 2020, 7, 1901952.

37

Wang, K. S.; Günthner, M.; Motz, G.; Flinn, B. D.; Bordia, R. K. Control of surface energy of silicon oxynitride films. Langmuir 2013, 29, 2889–2896.

38

Coan, T.; Barroso, G. S.; Machado, R. A. F.; de Souza, F. S.; Spinelli, A.; Motz, G. A novel organic–inorganic PMMA/polysilazane hybrid polymer for corrosion protection. Prog. Org. Coat. 2015, 89, 220–230.

39

Augustinho, T. R.; Motz, G.; Ihlow, S.; Machado, R. A. F. Application of hybrid organic/inorganic polymers as coatings on metallic substrates. Mater. Res. Express 2016, 3, 095301.

Nano Research
Pages 6582-6589
Cite this article:
Guo X, Li P, Liu G, et al. “Nanocompoundsite”: Nano phased polymer dispersed in inorganic matrix via covalent bonds. Nano Research, 2022, 15(7): 6582-6589. https://doi.org/10.1007/s12274-022-4233-6
Topics:

1018

Views

5

Crossref

5

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 25 December 2021
Revised: 06 February 2022
Accepted: 13 February 2022
Published: 20 April 2022
© Tsinghua University Press 2022
Return