AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Yellow responsive material based modification to reduce earphone induced Infection and hearing loss

Haoxin Cheng1,2Hongmei Liu2,3Zhiqiang Liu1,2Ziying Xu4Xiaorong Liu1,2Shuang Jia2Chaonan He2Shichen Liu2,5Jiao Zhang2Xiaolei Wang1,2( )
College of Chemistry, Nanchang University, Nanchang 330088, China
The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
The First Clinical Medical School, Nanchang University, Nanchang 330088, China
The Stomatological School, Nanchang University, Nanchang 330088, China
The Department of Vascular Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, China
Show Author Information

Graphical Abstract

The prevention of earphone induced ear infection and hearing loss is realized for the first time through yellow light chip and its responsive nano materials based modification.

Abstract

Today, earphones have almost been owned by everyone. However, wearing earphones for a long time can cause two serious problems: (1) irreversible damage to hearing; (2) rapid proliferation of bacteria in the ear canal. Herein, an earphone modification strategy is developed for the first time, to reduce hearing loss and inhibit bacteria simultaneously. This earphone is equipped with a high purity yellow light (YL) light-emitting diode chip developed by our university. Then, the surface of the earphone is loaded with porous zinc oxide and silver nanoparticle composite material (ZnO-Ag) that can respond to the YL. Under the excitation of YL, the porous ZnO-Ag can release reactive oxygen species with strong antibacterial activity. More importantly, we discover that YL can reduce the expression of matrix metalloproteinase-3, the secretion of inflammatory factors, and apoptosis in the cochlea, thereby effectively reduce hearing loss.

Electronic Supplementary Material

Download File(s)
12274_2022_4240_MOESM1_ESM.pdf (5.4 MB)

References

1

Carroll, Y. I.; Eichwald, J.; Scinicariello, F.; Hoffman, H. J.; Deitchman, S.; Radke, M. S.; Themann, C. L.; Breysse, P. Vital signs: Noise-induced hearing loss among adults-United States 2011−2012. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 139–144.

2

Serra, M. R.; Biassoni, E. C.; Richter, U.; Minoldo, G.; Franco, G.; Abraham, S.; Carignani, J. A.; Joekes, S.; Yacci, M. R. Recreational noise exposure and its effects on the hearing of adolescents. Part I: An interdisciplinary long-term study. Int. J. Audiol. 2010, 44, 65–73.

3

Wang, J.; Puel, J. L. Toward cochlear therapies. Physiol. Rev. 2018, 98, 2477–2522.

4

Harrison, R. V. Noise-induced hearing loss in children: A“less than silent” environmental danger. Paediatr. Child Health 2008, 13, 377–382.

5

Henderson, E.; Testa, M. A.; Hartnick, C. Prevalence of noise-induced hearing-threshold shifts and hearing loss among US youths. Pediatrics 2011, 127, e39–e46.

6

Weichbold, V.; Holzer, A.; Newesely, G.; Stephan, K. Results from high-frequency hearing screening in 14- to 15-year old adolescents and their relation to self-reported exposure to loud music. Int. J. Audiol. 2012, 51, 650–654.

7

Jolly, S. S., Natarajan, M. K. Atrial fibrillation and PCI-do we still need aspirin? N. Engl. J. Med. 2016, 375, 2490–2492.

8

Henderson, D.; Bielefeld, E. C.; Harris, K. C.; Hu, B. H. The role of oxidative stress in noise-induced hearing loss. Ear Hear. 2006, 27, 1–19.

9

Sautter, N. B.; Shick, E. H.; Ransohoff, R. M.; Charo, I. F.; Hirose, K. CC chemokine receptor 2 is protective against noise-induced hair cell death: Studies in CX3CR1+/GFP mice. J. Assoc. Res. Otolaryngol. 2006, 7, 361–372.

10

Tornabene, S. V.; Sato, K.; Pham, L.; Billings, P.; Keithley, E. M. Immune cell recruitment following acoustic trauma. Hearing Res. 2006, 222, 115–124.

11

Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on health. Lancet 2014, 383, 1325–1332.

12

Eichwald, J.; Scinicariello, F.; Telfer, J. L.; Carroll, Y. I. Use of personal hearing protection devices at loud athletic or entertainment events among adults-United States, 2018. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1151–1155.

13

Li, J.; Akil, O.; Rouse, S. L.; McLaughlin, C. W.; Matthews, I. R.; Lustig, L. R.; Chan, D. K.; Sherr, E. H. Deletion of TMTC4 activates the unfolded protein response and causes postnatal hearing loss. J. Clin. Invest. 2018, 128, 5150–5162.

14

Ohlemiller, K. K. Recent findings and emerging questions in cochlear noise injury. Hearing Res. 2008, 245, 5–17.

15

Oishi, N.; Schacht, J. Emerging treatments for noise-induced hearing loss. Expert Opin. Emerg. Dr. 2011, 16, 235–245.

16

Cao, F.; Zeng, B.; Zhu, Y. L.; Yu, F.; Wang, M. Y.; Song, X. W.; Cheng, X. Y.; Chen, L. M.; Wang, X. L. Porous ZnO modified silk sutures with dual light defined antibacterial, healing promotion and controlled self-degradation capabilities. Biomater. Sci. 2020, 8, 250–255.

17

Lin, J. Q.; Ding, X. W.; Hong, C.; Pang, Y. L.; Chen, L. M.; Liu, Q. W.; Zhang, X.; Xin, H. B.; Wang, X. L. Several biological benefits of the low color temperature light-emitting diodes based normal indoor lighting source. Sci. Rep. 2019, 9, 7560.

18

Weng, Z. Z.; Yu, F.; Leng, Q. H.; Zhao, S. Y.; Xu, Y. Y.; Zhang, W.; Zhu, Z. L.; Ye, J.; Wei, Q.; Wang, X. L. Electrical and visible light dual-responsive ZnO nanocomposite with multiple wound healing capability. Mater. Sci. Eng. C 2021, 124, 112066.

19

Huang, P. C.; Ma, W. J.; Yu, P.; Mao, L. Q. Dopamine-directed in-situ and one-step synthesis of Au@Ag core−shell nanoparticles immobilized to a metal-organic framework for synergistic catalysis. Chem.—Asian J 2016, 11, 2705–2709.

20

Agnihotri, S.; Mukherji, S.; Mukherji, S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver. Nanoscale 2013, 5, 7328–7340.

21

Das, S. K.; Khan, M. M. R.; Guha, A. K.; Naskar, N. Bio-inspired fabrication of silver nanoparticles on nanostructured silica: Characterization and application as a highly efficient hydrogenation catalyst. Green Chem. 2013, 15, 2548–2557.

22

Agnihotri, S.; Bajaj, G.; Mukherji, S.; Mukherji, S. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: An enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale 2015, 7, 7415–7429.

23

Cao, C. Y.; Ge, W.; Yin, J. J.; Yang, D. L.; Wang, W. J.; Song, X. J.; Hu, Y.; Yin, J. L.; Dong, X. C. Mesoporous silica supported silver-bismuth nanoparticles as photothermal agents for skin infection synergistic antibacterial therapy. Small 2020, 16, 2000436.

24

Zhou, Z. Q.; Ma, J. J.; Li, K.; Zhang, W. W.; Li, K.; Tu, X. H.; Liu, L. X.; Xu, J.; Zhang, H. A plant leaf-mimetic membrane with controllable gas permeation for efficient preservation of perishable products. ACS Nano 2021, 15, 8742–8752.

25

Kumar, S.; Karmacharya, M.; Joshi, S. R.; Gulenko, O.; Park, J.; Kim, G. H.; Cho, Y. K. Photoactive antiviral face mask with self-sterilization and reusability. Nano Lett. 2021, 21, 337–343.

26

Shi, L. X.; Liu, X.; Wang, W. S.; Jiang, L.; Wang, S. T. A self-pumping dressing for draining excessive biofluid around wounds. Adv. Mater. 2018, 31, 1804187.

27

Min, H.; Wang, J.; Qi, Y. Q.; Zhang, Y. L.; Han, X. X.; Xu, Y.; Xu, J. C.; Li, Y.; Chen, L.; Cheng, K. M., et al. Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy. Adv. Mater. 2019, 31, 1808200.

28

Wang, L. W.; Zhang, X.; Yu, X.; Gao, F.; Shen, Z. Y.; Zhang, X. L.; Ge, S. G.; Liu, J.; Gu, Z. J.; Chen, C. Y. An all-organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity. Adv. Mater. 2019, 31, 1901965.

29

Wang, Z. Z.; Dong, K.; Liu, Z.; Zhang, Y.; Chen, Z. W.; Sun, H. J.; Ren, J. S.; Qu, X. G. Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 2017, 113, 145–157.

30

Wei, T.; Zhan, W. J.; Yu, Q.; Chen, H. Smart biointerface with photoswitched functions between bactericidal activity and bacteria-releasing ability. ACS Appl. Mater. Interfaces 2017, 9, 25767–25774.

31

Wei, T.; Yu, Q.; Chen, H. Responsive and synergistic antibacterial coatings: Fighting against bacteria in a smart and effective way. Adv. Healthc. Mater. 2019, 8, 1801381.

32

Liu, L.; Shi, H. C.; Yu, H.; Yan, S. J.; Luan, S. F. The recent advances in surface antibacterial strategies for biomedical catheters. Biomater. Sci. 2020, 8, 4095–4108.

33

Liu, T. W.; Yan, S. J.; Zhou, R. T.; Zhang, X.; Yang, H. W.; Yan, Q. Y.; Yang, R.; Luan, S. F. Self-adaptive antibacterial coating for universal polymeric substrates based on a micrometer-scale hierarchical polymer brush system. ACS Appl. Mater. Interfaces 2020, 12, 42576–42585.

34

Hu, B. H.; Berkey, C.; Feliciano, T.; Chen, X. H.; Li, Z. Y.; Chen, C.; Amini, S.; Nai, M. H.; Lei, Q. L.; Ni, R., et al. Thermal-disrupting interface mitigates intercellular cohesion loss for accurate topical antibacterial therapy. Adv. Mater. 2020, 32, 1907030.

35

Perelshtein, I.; Lipovsky, A.; Perkas, N.; Gedanken, A.; Moschini, E.; Mantecca, P. The influence of the crystalline nature of nano-metal oxides on their antibacterial and toxicity properties. Nano Res. 2015, 8, 695–707.

36

Chen, M.; Long, Z.; Dong, R. H.; Wang, L.; Zhang, J. J.; Li, S. X.; Zhao, X. H.; Hou, X. D.; Shao, H. W.; Jiang, X. Y. Titanium incorporation into Zr-porphyrinic metal-organic frameworks with enhanced antibacterial activity against multidrug-resistant pathogens. Small 2020, 16, 1906240.

37

Panda, S.; Rout, T. K.; Prusty, A. D.; Ajayan, P. M.; Nayak, S. Electron transfer directed antibacterial properties of graphene oxide on metals. Adv. Mater. 2018, 30, 1702149.

38

Zhu, J. W.; Tian, J.; Yang, C.; Chen, J. P.; Wu, L. H.; Fan, M. N.; Cai, X. J. L-arg-rich amphiphilic dendritic peptide as a versatile NO donor for NO/photodynamic synergistic treatment of bacterial infections and promoting wound healing. Small 2021, 17, 2101495.

39

Coyat, C.; Cazevieille, C.; Baudoux, V.; Larroze-Chicot, P.; Caumes, B.; Gonzalez-Gonzalez, S. Morphological consequences of acoustic trauma on cochlear hair cells and the auditory nerve. Int. J. Neurosci. 2019, 129, 580–587.

40

Park, J. S.; Kang, S. J.; Seo, M. K.; Jou, I.; Woo, H. G.; Park, S. M. Role of cysteinyl leukotriene signaling in a mouse model of noise-induced cochlear injury. Proc. Natl. Acad. Sci. USA 2014, 111, 9911–9916.

41

Li, J.; Liu, X. M.; Zhou, Z. A.; Tan, L.; Wang, X. B.; Zheng, Y. F.; Han, Y.; Chen, D. F.; Yeung, K. W. K.; Cui, Z. D., et al. Lysozyme-assisted photothermal eradication of methicillin-resistant Staphylococcus aureus infection and accelerated tissue repair with natural melanosome nanostructures. ACS Nano 2019, 13, 11153–11167.

Nano Research
Pages 6297-6305
Cite this article:
Cheng H, Liu H, Liu Z, et al. Yellow responsive material based modification to reduce earphone induced Infection and hearing loss. Nano Research, 2022, 15(7): 6297-6305. https://doi.org/10.1007/s12274-022-4240-7
Topics:

1079

Views

4

Crossref

4

Web of Science

3

Scopus

1

CSCD

Altmetrics

Received: 07 January 2022
Revised: 13 February 2022
Accepted: 14 February 2022
Published: 08 April 2022
© Tsinghua University Press 2022
Return