AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Constructing a stable cobalt-nitrogen-carbon air cathode from coordinatively unsaturated zeolitic-imidazole frameworks for rechargeable zinc-air batteries

Tingting WangMeng LiuSomboon ChaemchuenJichao WangYe YuanCheng ChenAng Qiao( )Francis Verpoort( )Zongkui Kou( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Show Author Information

Graphical Abstract

A stable cobalt-nitrogen-carbon (Co-N-C) air cathode is constructed from coordinatively unsaturated zeolitic-imidazole frameworks (ZIFs) for rechargeable zinc-air batteries (ZABs).

Abstract

Zeolitic-imidazole frameworks (ZIFs) derivations have widely emerged as an efficient air cathode of zinc-air batteries (ZABs) due to excellent bifunctional oxygen electrocatalysis performance. However, they are not stable enough for long-term operation of rechargeable ZABs because of weak association with current collector, especially under bending conditions for flexible ZAB devices. Here, we show that by purposely designing coordinatively unsaturated ZIFs via a facile morphology regulation, which can be chemically linked on acid-treated carbon cloth, a stable Co-N-C air cathode is therefore derived where Co nanoparticles (NPs) are uniformly confined within the Co-N-C matrix on carbon cloth (Co/Co-N-C/CC). Specifically, when without being stabilized from carbon cloth, the pyrolysis of ZIFs with different unsaturated coordination levels has a negligible impact on the bifunctional oxygen-catalyzed performance. The optimal Co/Co-N-C/CC catalyst assembled ZAB possesses a large open circuit voltage of 1.415 V and a high peak power density of 163 mW·cm−2 as well as excellent cycling durability upon 630 discharge–charge cycles with 61% voltage efficiency remained, largely exceeding those of a benchmark Pt/C-IrO2 catalyst assembled ZAB. The synergy between Co NPs and active Co-N-C sites via electronic interaction induces the outstanding bifunctional oxygen-catalyzed activity and cathode performance. The present work highlights the importance of unsaturated coordination structures in ZIFs precursors for the performance of derived nanostructures in integrated electrodes.

Electronic Supplementary Material

Download File(s)
12274_2022_4243_MOESM1_ESM.pdf (1.2 MB)

References

1

Lee, J. S.; Kim, S. T.; Cao, R. G.; Choi, N. S.; Liu, M. L.; Lee, K. T.; Cho, J. Metal-air batteries with high energy density: Li-air versus Zn-air. Adv. Energy Mater. 2011, 1, 34–50.

2

Meng, F. L.; Liu, K. H.; Zhang, Y.; Shi, M. M.; Zhang, X. B.; Yan, J. M.; Jiang, Q. Recent advances toward the rational design of efficient bifunctional air electrodes for rechargeable Zn-air batteries. Small 2018, 14, 1703843.

3

Li, J. K.; Alsudairi, A.; Ma, Z. F.; Mukerjee, S.; Jia, Q. Y. Asymmetric volcano trend in oxygen reduction activity of Pt and non-Pt catalysts: In situ identification of the site-blocking effect. J. Am. Chem. Soc. 2017, 139, 1384–1387.

4

Li, W. D.; Zhao, Y. X.; Liu, Y.; Sun, M. Z.; Waterhouse, G. I. N.; Huang, B. L.; Zhang, K.; Zhang, T. R.; Lu, S. Y. Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 3290–3298.

5

Song, H. Q.; Wu, M.; Tang, Z. Y.; Tse, J. S.; Yang, B.; Lu, S. Y. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 7234–7244.

6

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem.,Int. Ed. 2021, 60, 19262–19271.

7

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

8

Wang, Y.; Zheng, X. B; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

9

Song, H. Q.; Li, Y. H.; Shang, L.; Tang, Z. Y.; Zhang, T. R.; Lu, S. Y. Designed controllable nitrogen-doped carbon-dots-loaded MoP nanoparticles for boosting hydrogen evolution reaction in alkaline medium. Nano Energy 2020, 72, 104730.

10

Cui, T. T.; Wang, Y. P.; Ye, Y.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

11

Zhang, L.; Zhu, J. W.; Li, X.; Mu, S. C.; Verpoort, F.; Xue, J. M.; Kou, Z. K.; Wang, J. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip. Mater. 2022, 1, 51–87.

12

Wu, W. J.; Liu, Y.; Liu, D.; Chen, W. X.; Song, Z. Y.; Wang, X. M.; Zheng, Y. M.; Lu, N.; Wang, C. X.; Mao, J. J. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Res. 2021, 14, 998–1003.

13

Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

14

Zhang, Z. W.; Jin, H. H.; Zhu, J. W.; Li, W. Q.; Zhang, C. T.; Zhao, J. H.; Luo, F.; Sun, Z. G.; Mu, S. C. 3D flower-like ZnFe-ZIF derived hierarchical Fe, N-Codoped carbon architecture for enhanced oxygen reduction in both alkaline and acidic media, and zinc-air battery performance. Carbon 2020, 161, 502–509.

15

Amiinu, I. S.; Liu, X. B; Pu, Z. H; Li, W. Q; Li, Q. D; Zhang, J.; Tang, H. L.; Zhang, H. N.; Mu, S. C. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1704638.

16

Tana, P.; Chen, B.; Xua, H. R.; Zhang, H. C.; Cai, W. Z.; Ni, M.; Liu, M. L.; Shao, Z. P. Flexible Zn- and Li-air batteries: Recent advances, challenges, and future perspectives. Energy Environ. Sci. 2017, 10, 2056–2080.

17

Jiang, Y.; Deng, Y. P.; Liang, R. L.; Fu, J.; Gao, R.; Luo, D.; Bai, Z. Y.; Hu, Y. F.; Yu, A. P.; Chen, Z. W. d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nat. Commun. 2020, 11, 5858.

18

Yan, X. X.; Ha, Y.; Wu, R. B. Binder-free air electrodes for rechargeable zinc-air batteries: Recent progress and future perspectives. Small Methods 2021, 5, 2000827.

19

Zang, W. J.; Sumboja, A.; Ma, Y. Y.; Zhang, H.; Wu, Y.; Wu, S. S.; Wu, H. J.; Liu, Z. L.; Guan, C.; Wang, J. et al. Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes. ACS Catal. 2018, 8, 8961–8969.

20

Guan, C.; Sumboja, A.; Wu, H. J.; Ren, W. N.; Liu, X. M.; Zhang, H.; Liu, Z. L.; Cheng, C. W.; Pennycook, S. J.; Wang, J. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1704117.

21

Xie, J. P.; Li, J. L.; Li, X. D.; Lei, H.; Zhuo, W. C.; Li, X. B.; Hong, G.; Hui, K. N.; Pan, L. K.; Mai, W. J. Ultrahigh “relative energy density” and mass loading of carbon cloth anodes for K-ion batteries. CCS Chem. 2020, 3, 791–799.

22

Zhu, L.; Zheng, D. Z.; Wang, Z. F.; Zheng, X. S.; Fang, P. P.; Zhu, J. F.; Yu, M. H.; Tong, Y. X.; Lu, X. H. A confinement strategy for stabilizing ZIF-derived bifunctional catalysts as a benchmark cathode of flexible all-solid-state zinc-air batteries. Adv. Mater. 2018, 30, 1805268.

23

Li, X.; Li, Z. H.; Lu, L.; Huang, L. M.; Xiang, L.; Shen, J.; Liu, S. Y.; Xiao, D. R. The solvent induced inter-dimensional phase transformations of cobalt zeolitic-imidazolate frameworks. Chem. —Eur. J. 2017, 23, 10638–10643.

24

Chen, R. Z.; Yao, J. F.; Gu, Q. F.; Smeets, S.; Baerlocher, C.; Gu, H. X.; Zhu, D. R.; Morris, W.; Yaghi, O. M.; Wang, H. T. Two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chem. Commun. 2013, 49, 9500–9502.

25

Low, Z. X.; Yao, J. F.; Liu, Q.; He, M.; Wang, Z. Y.; Suresh, A. K.; Bellare, J.; Wang, H. T. Crystal transformation in zeolitic-imidazolate framework. Cryst. Growth Des. 2014, 14, 6589–6598.

26

Yang, F.; Xie, J. H.; Liu, X. Q.; Wang, G. Z.; Lu, X. H. Linker defects triggering boosted oxygen reduction activity of Co/Zn-ZIF nanosheet arrays for rechargeable Zn-air batteries. Small 2021, 17, 2007085.

27

Zhou, K.; Mousavi, B.; Luo, Z. X.; Phatanasri, S.; Chaemchuen, S.; Verpoort, F. Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J. Mater. Chem. A 2017, 5, 952–957.

28

Kim, D. W.; Kang, D. W.; Kang, M.; Lee, J. H.; Choe, J. H.; Chae, Y. S.; Choi, D. S.; Yun, H.; Hong, C. S. High ammonia uptake of a metal-organic framework adsorbent in a wide pressure range. Angew. Chem. 2020, 132, 22720–22725.

29

Yi, F. Y.; Zhang, R.; Wang, H. L.; Chen, L. F.; Han, L.; Jiang, H. L.; Xu, Q. Metal-organic frameworks and their composites: Synthesis and electrochemical applications. Small Methods 2017, 1, 1700187.

30

Chen, Z. L.; Ha, Y.; Jia, H. X.; Yan, X. X.; Chen, M.; Liu, M.; Wu, R. B. Oriented transformation of Co-LDH into 2D/3D ZIF-67 to achieve Co-N-C hybrids for efficient overall water splitting. Adv. Energy Mater. 2019, 9, 1803918.

31

Chen, Y. S.; Zhang, W. H.; Zhu, Z. Y.; Zhang, L. L.; Yang, J. Y.; Chen, H. H.; Zheng, B.; Li, S; Zhang, W. N.; Wu, J. S. et al. Co nanoparticles combined with nitrogen-doped graphitic carbon anchored on carbon fibers as a self-standing air electrode for flexible zinc-air batteries. J. Mater. Chem. A 2020, 8, 7184–7191.

32

Shen, M. X.; Zheng, L. R.; He, W. H.; Ruan, C. P.; Jiang, C. H.; Ai, K. J.; Lu, L. H. High-performance oxygen reduction electrocatalysts derived from uniform cobalt-adenine assemblies. Nano Energy 2015, 17, 120–130.

33

Ahn, S. H.; Manthiram, A. Cobalt phosphide coupled with heteroatom-doped nanocarbon hybrid electroctalysts for efficient, long-life rechargeable zinc-air batteries. Small 2017, 13, 1702068.

34

Yan, L. T.; Xu, Y. L.; Chen, P.; Zhang, S.; Jiang, H. M.; Yang, L. Z.; Wang, Y.; Zhang, L.; Shen, J. X.; Zhao, X. B. et al. A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: A superior multifunctional electrode for overall water splitting and Zn-air batteries. Adv. Mater. 2020, 32, 2003313.

35

Wang, Y. Y.; Kumar, A.; Ma, M.; Jia, Y.; Wang, Y.; Zhang, Y.; Zhang, G. X.; Sun, X. M.; Yan, Z. F. Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Res. 2020, 13, 1090–1099.

36

Jiang, G. Y.; Jiang, N.; Zheng, N.; Chen, X.; Mao, J. Y.; Ding, G. Y.; Li, Y. H.; Sun, F. G.; Li, Y. S. MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes. Energy Storage Mater. 2019, 23, 181–189.

37
Wang, R. R.; Wu, R. B.; Yan, X. X.; Liu, D.; Guo, P. F.; Li, W.; Pan, H. G. Implanting single Zn atoms coupled with metallic Co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high-performance lithium-sulfur batteries. Adv. Funct. Mater., in press, https://doi.org/ 10.1002/adfm.202200424.
38

Jiang, Y.; Deng, Y. P.; Liang, R. L.; Fu, J.; Luo, D.; Liu, G. H.; Li, J. D.; Zhang, Z.; Hu, Y. F.; Chen, Z. W. Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy flexible Zn-air batteries. Adv. Energy Mater. 2019, 9, 1900911.

39

Wang, T. T.; Kou, Z. K.; Mu, S. C.; Liu, J. P.; He, D. P.; Amiinu, I. S.; Meng, W.; Zhou, K.; Luo, Z. X.; Chaemchuen, S. et al. 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 2018, 28, 1705048.

40

You, B.; Jiang, N.; Sheng, M. L.; Drisdell, W. S.; Yano, J.; Sun, Y. J. Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 2015, 5, 7068–7076.

41

Ren, D. Z.; Ying, J.; Xiao, M. L.; Deng, Y. P.; Ou, J. H.; Zhu, J. B.; Liu, G. H.; Pei, Y.; Li, S.; Jauhar, A. M. et al. Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable zinc-air batteries. Adv. Funct. Mater. 2020, 30, 1908167.

42

Ahn, S. H.; Klein, M. J.; Manthiram, A. 1D Co- and N-doped hierarchically porous carbon nanotubes derived from bimetallic metal organic framework for efficient oxygen and tri-iodide reduction reactions. Adv. Energy Mater. 2017, 7, 1601979.

43

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

44

Yan, L. T.; Xu, Y. L.; Chen, P.; Zhang, S.; Jiang, H. M.; Yang, L. Z.; Wang, Y.; Zhang, L.; Shen, J. X.; Zhao, X. B. et al. A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: A superior multifunctional electrode for overall water splitting and Zn-air batteries. Adv. Mater. 2020, 32, 2003313.

Nano Research
Pages 5895-5901
Cite this article:
Wang T, Liu M, Chaemchuen S, et al. Constructing a stable cobalt-nitrogen-carbon air cathode from coordinatively unsaturated zeolitic-imidazole frameworks for rechargeable zinc-air batteries. Nano Research, 2022, 15(7): 5895-5901. https://doi.org/10.1007/s12274-022-4243-4
Topics:

1112

Views

9

Crossref

10

Web of Science

9

Scopus

2

CSCD

Altmetrics

Received: 24 January 2022
Revised: 11 February 2022
Accepted: 15 February 2022
Published: 20 April 2022
© Tsinghua University Press 2022
Return