AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tailored boron phosphate monolithic foam with multimodal hierarchically porous structure and its applications

Qiuwen Liu1,2,3,§( )Qiang Liu1,§Yawei Wu1Renyou Zeng1Fangshu Xing1ChuChu Cheng1Huibin Qiu2( )Caijin Huang1( )
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China

§ Qiuwen Liu and Qiang Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Self-supporting monolithic B2O3@BPO4 foams with a multimodal hierarchically porous structure show a promising potential in catalytic oxidation dehydrogenation of alkanes, pollutant removal, and fireproofing material.

Abstract

The synthesis of multimodal hierarchically porous materials is of great challenge by facile approach. Herein, we assemble BPO4 hollow spheres into macroscopic foam materials with multimodal hierarchically porous structure by combining down-to-up process and Ostwald ripening effect. Tailored monolithic B2O3@BPO4 foams were obtained from a sticky hydrogel precursor by a one-step annealing process. The foam has the self-supporting frame of BPO4 hollow spheres with covering B2O3 nanowires and shows excellent permeability and relatively high surface area due to hierarchical structure. The formation mechanism of monolithic B2O3@BPO4 foams mainly undergoes inflation, particle aggregation, and Ostwald ripening process. Monolithic foams exhibit superior catalytic activity in oxidation dehydrogenation of alkanes due to the sufficient exposure of active sites over the special frame structure. Furthermore, various monolithic functionalized BPO4 foam composites can be easily synthesized and exhibit superior performance in different applications including the oxidation of carbon monoxide, and the self-driven removal of organic pollutants. More interestingly, we also found the sticky hydrogel precursor possesses good heat shielding effect. This work provides a new insight for constructing multimodal hierarchically porous materials with the remaining superior property of nanoscale to cope with various challenges.

Electronic Supplementary Material

Video
12274_2022_4244_MOESM2_ESM.mp4
12274_2022_4244_MOESM3_ESM.mp4
12274_2022_4244_MOESM4_ESM.mp4
Download File(s)
12274_2022_4244_MOESM1_ESM.pdf (2.1 MB)

References

1

Yang, X. Y.; Chen, L. H.; Li, Y.; Rooke, J. C.; Sanchez, C.; Su, B. L. Hierarchically porous materials: Synthesis strategies and structure design. Chem. Soc. Rev. 2017, 46, 481–558.

2

Yang, X. Y.; Léonard, A.; Lemaire, A.; Tian, G.; Su, B. L. Self-formation phenomenon to hierarchically structured porous materials: Design, synthesis, formation mechanism and applications. Chem. Commun. 2011, 47, 2763–2786.

3

Zheng, Z. Y.; Gao, K. Y.; Luo, Y. H.; Li, D. M.; Meng, Q. B.; Wang, Y. R.; Zhang, D. Z. Rapidly infrared-assisted cooperatively self-assembled highly ordered multiscale porous materials. J. Am. Chem. Soc. 2008, 130, 9785–9789.

4

Sel, O.; Kuang, D. B.; Thommes, M.; Smarsly, B. Principles of hierarchical meso- and macropore architectures by liquid crystalline and polymer colloid templating. Langmuir 2006, 22, 2311–2322.

5

Kutty, R. G.; Sreejith, S.; Kong, X. H.; He, H. Y.; Wang, H.; Lin, J. H.; Suenaga, K.; Lim, C. T.; Zhao, Y. L.; Ji, W. et al. A topologically substituted boron nitride hybrid aerogel for highly selective CO2 uptake. Nano Res. 2018, 11, 6325–6335.

6

Chai, G. S.; Shin, I. S.; Yu, J. S. Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells. Adv. Mater. 2004, 16, 2057–2061.

7

Meng, Z. H.; Chen, N.; Cai, S. H.; Wu, J. W.; Wang, R.; Tian, T.; Tang, H. L. Rational design of hierarchically porous Fe-N-doped carbon as efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 2021, 14, 4768–4775.

8

Zhao, Q.; Wang, Q.; Su, Y. G.; Huang, K. K.; Xu, G. R.; Li, Y. J.; Liu, J. Y.; Liu, B. C.; Zhang, J. Synergy of facet control and surface metalloid modification on hierarchical Pt-Ni nanoroses toward high electrocatalytic activity. CrystEngComm 2017, 19, 4964–4971.

9

Reverchon, E.; Cardea, S. Formation of cellulose acetate membranes using a supercritical fluid assisted process. J. Membr. Sci. 2004, 240, 187–195.

10

Wood, C. D.; Cooper, A. I. Synthesis of macroporous polymer beads by suspension polymerization using supercritical carbon dioxide as a pressure-adjustable porogen. Macromolecules 2001, 34, 5–8.

11

Mukai, S. R.; Nishihara, H.; Tamon, H. Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals. Chem. Commun. 2004, 874–875.

12

Yan, K.; Lu, Y. R. Direct growth of MoS2 microspheres on ni foam as a hybrid nanocomposite efficient for oxygen evolution reaction. Small 2016, 12, 2975–2981.

13

Fan, C.; Yue, X. Y.; Shen, X. P.; Cheng, J.; Ke, W. T.; Ji, Z. Y.; Yuan, A. H.; Zhu, G. X. One-pot hydrothermal synthesis of Ni3S2/MoS2/FeOOH hierarchical microspheres on Ni foam as a high-efficiency and durable dual-function electrocatalyst for overall water splitting. ChemElectroChem 2021, 8, 665–674.

14

Wu, Y. Y.; Li, G. D.; Liu, Y. P.; Yang, L.; Lian, X. R.; Asefa, T.; Zou, X. X. Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst. Adv. Funct. Mater. 2016, 26, 4839–4847.

15

Su, B. L.; Vantomme, A.; Surahy, L.; Pirard, R.; Pirard, J. P. Hierarchical multimodal mesoporous carbon materials with parallel macrochannels. Chem. Mater. 2007, 19, 3325–3333.

16

Twigg, M. V.; Richardson, J. T. Fundamentals and applications of structured ceramic foam catalysts. Ind. Eng. Chem. Res. 2007, 46, 4166–4177.

17

Xue, Y. M.; Dai, P. C.; Zhou, M.; Wang, X.; Pakdel, A.; Zhang, C.; Weng, Q. H.; Takei, T.; Fu, X. W.; Popov, Z. I. et al. Multifunctional superelastic foam-like boron nitride nanotubular cellular-network architectures. ACS Nano 2017, 11, 558–568.

18

Tian, Z. L.; Sun, J. J.; Wang, S. G.; Zeng, X. L.; Zhou, S.; Bai, S. L.; Zhao, N.; Wong, C. P. A thermal interface material based on foam-templated three-dimensional hierarchical porous boron nitride. J. Mater. Chem. A 2018, 6, 17540–17547.

19

Zhang, Y. Y.; Wan, Q. J.; Yang, N. J. Recent advances of porous graphene: Synthesis, functionalization, and electrochemical applications. Small 2019, 15, 1903780.

20

Huang, X. D.; Liu, Y.; Zhang, H. W.; Zhang, J.; Noonan, O.; Yu, C. Z. Free-standing monolithic nanoporous graphene foam as a high performance aluminum-ion battery cathode. J. Mater. Chem. A 2017, 5, 19416–19421.

21

Cao, L.; Dai, P. C.; Tang, J.; Li, D.; Chen, R. H.; Liu, D. D.; Gu, X.; Li, L. J.; Bando, Y.; Ok, Y. S. et al. Spherical superstructure of boron nitride nanosheets derived from boron-containing metal–organic frameworks. J. Am. Chem. Soc. 2020, 142, 8755–8762.

22

Wang, G. M.; Yan, Y.; Zhang, X. F.; Gao, X. H.; Xie, Z. L. Three-dimensional porous hexagonal boron nitride fibers as metal-free catalysts with enhanced catalytic activity for oxidative dehydrogenation of propane. Ind. Eng. Chem. Res. 2021, 60, 17949–17958.

23

Colorio, G.; Védrine, J. C.; Auroux, A.; Bonnetot, B. Partial oxidation of ethane over alumina-boria catalysts. Appl. Catal. A 1996, 137, 55–68.

24

Liu, Q. W.; Wu, Y. W.; Xing, F. S.; Liu, Q.; Guo, X. S.; Huang, C. J. B2O3@BPO4 sandwich-like hollow spheres as metal-free supported liquid-phase catalysts. J. Catal. 2020, 381, 599–607.

25

Liu, Z. Y.; Fang, Y.; Jia, H. C.; Wang, C.; Song, Q. Q.; Li, L. L.; Lin, J.; Huang, Y.; Yu, C.; Tang, C. C. Novel multifunctional cheese-like 3D carbon-BN as a highly efficient adsorbent for water purification. Sci. Rep. 2018, 8, 1104.

26

Liu, D.; Lei, W. W.; Qin, S.; Chen, Y. Template-free synthesis of functional 3D BN architecture for removal of dyes from water. Sci. Rep. 2014, 4, 4453.

27

Xue, Y. M.; Dai, P. C.; Jiang, X. F.; Wang, X. B.; Zhang, C.; Tang, D. M.; Weng, Q. H.; Wang, X.; Pakdel, A.; Tang, C. C. et al. Template-free synthesis of boron nitride foam-like porous monoliths and their high-end applications in water purification. J. Mater. Chem. A 2016, 4, 1469–1478.

28

Yousefi, N.; Lu, X. L.; Elimelech, M.; Tufenkji, N. Environmental performance of graphene-based 3D macrostructures. Nat. Nanotechnol. 2019, 14, 107–119.

29

Liu, Y.; Wygant, B. R.; Kawashima, K.; Mabayoje, O.; Hong, T. E.; Lee, S. G.; Lin, J.; Kim, J. H.; Yubuta, K.; Li, W. Z. et al. Facet effect on the photoelectrochemical performance of a WO3/BiVO4 heterojunction photoanode. Appl. Catal. B 2019, 245, 227–239.

30

Liu, Q. W.; Chen, C.; Liu, Q.; Wu, Y. W.; Xing, F. S.; Cheng, C. C.; Huang, C. J. Nonmetal oxygen vacancies confined under boron nitride for enhanced oxidative dehydrogenation of propane to propene. Appl. Surf. Sci. 2021, 537, 147927.

31

Yu, Q. Q.; Zheng, Y. Q.; Wang, Y. P.; Shen, L.; Wang, H. T.; Zheng, Y. M.; He, N.; Li, Q. B. Highly selective adsorption of phosphate by pyromellitic acid intercalated ZnAl-LDHs: Assembling hydrogen bond acceptor sites. Chem. Eng. J. 2015, 260, 809–817.

32

Yang, H. G.; Zeng, H. C. Preparation of hollow anatase TiO2 nanospheres via ostwald ripening. J. Phys. Chem. B 2004, 108, 3492–3495.

33

Gao, X. Q.; Lu, W. D.; Hu, S. Z.; Li, W. C.; Lu, A. H. Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation. Chin. J. Catal. 2019, 40, 184–191.

34

Zhou, Y. X.; Wang, Y.; Lu, W. D.; Yan, B.; Lu, A. H. A high propylene productivity over B2O3/SiO2@honeycomb cordierite catalyst for oxidative dehydrogenation of propane. Chin. J. Chem. Eng. 2020, 28, 2778–2784.

35

Zhang, X.; Zhang, M. T.; Deng, Y. C.; Xu, M. Q.; Artiglia, L.; Wen, W.; Gao, R.; Chen, B. B.; Yao, S. Y.; Zhang, X. C. et al. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature 2021, 589, 396–401.

36

Chen, H.; Liu, Y.; Yang, F.; Wei, M. M.; Zhao, X. F.; Ning, Y. X.; Liu, Q. F.; Zhang, Y.; Fu, Q.; Bao, X. H. Active phase of FeOx/Pt catalysts in low-temperature CO oxidation and preferential oxidation of CO reaction. J. Phys. Chem. C 2017, 121, 10398–10405.

37

Xin, X.; Lang, J. Y.; Wang, T. T.; Su, Y. G.; Zhao, Y. X.; Wang, X. J. Construction of novel ternary component photocatalyst Sr0.25H1.5Ta2O6·H2O coupled with g-C3N4 and Ag toward efficient visible light photocatalytic activity for environmental remediation. Appl. Catal. B 2016, 181, 197–209.

38

Ullah, S.; Ahmad, F.; Shariff, A. M.; Bustam, M. A.; Gonfa, G.; Gillani, Q. F. Effects of ammonium polyphosphate and boric acid on the thermal degradation of an intumescent fire retardant coating. Prog. Org. Coat. 2017, 109, 70–82.

39
Shen, K. K. Review of recent advances on the use of boron-based flame retardants. In Polymer Green Flame Retardants. Papaspyrides, C. D., Kiliaris, P., Eds.; Elsevier: Amsterdam, 2014; pp 367–388.
40

Ullah, S.; Ahmad, F.; Yusoff, P. S. M. M. Effect of boric acid and melamine on the intumescent fire-retardant coating composition for the fire protection of structural steel substrates. J. Appl. Polym. Sci. 2013, 128, 2983–2993.

Nano Research
Pages 6695-6704
Cite this article:
Liu Q, Liu Q, Wu Y, et al. Tailored boron phosphate monolithic foam with multimodal hierarchically porous structure and its applications. Nano Research, 2022, 15(7): 6695-6704. https://doi.org/10.1007/s12274-022-4244-3
Topics:

964

Views

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 29 December 2021
Revised: 29 January 2022
Accepted: 16 February 2022
Published: 19 April 2022
© Tsinghua University Press 2022
Return