Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A coordination nanosheet composed of [Fe(tpy)2]2+ (tpy = 2,2':6',2''-terpyridine) units, showing reversible electrochromism at the ligand-based cathodic potential, has been prepared through a liquid/liquid interfacial synthesis. The noble metal-free nanosheet exhibited a CO evolution rate of 114.3 mmol·g−1·h−1 with the selectivity up to 99.3% under visible light irradiation in the presence of water, which is in the front rank of heterogeneous catalysis for CO2 photoreduction. Such robust photocatalytic performance is due to efficient ligand-based electron transfer through long-lived π radical anion tpy·− with a lifetime more than 25 min, as evidenced by in situ electron paramagnetic resonance (EPR) and ultraviolet–visible–near infrared (UV–vis–NIR) spectroscopy studies. Fe(II) cation in [Fe(tpy)2]2+ mainly contributes to enhancing reduction potentials of ligand and stabilizing π radical anion tpy·−. This ligand-based electron transfer with the aid of metal cation represents a promising strategy for selective CO2 photoreduction, especially towards gaining CO from CO2.
Mondal, B.; Rana, A.; Sen, P.; Dey, A. Intermediates involved in the 2e−/2h+ reduction of CO2 to CO by iron(0) porphyrin. J. Am. Chem. Soc. 2015, 137, 11214–11217.
Hooe, S. L.; Dressel, J. M.; Dickie, D. A.; Machan, C. W. Highly efficient electrocatalytic reduction of CO2 to CO by a molecular chromium complex. ACS Catal. 2020, 10, 1146–1151.
Kinzel, N. W.; Werlé, C.; Leitner, W. Transition metal complexes as catalysts for the electroconversion of CO2: An organometallic perspective. Angew. Chem., Int. Ed. 2021, 60, 11628–11686.
Nie, W. X.; Tarnopol, D. E.; McCrory, C. C. L. Enhancing a molecular electrocatalyst’s activity for CO2 reduction by simultaneously modulating three substituent effects. J. Am. Chem. Soc. 2021, 143, 3764–3778.
Martin, D. J.; Mayer, J. M. Oriented electrostatic effects on O2 and CO2 reduction by a polycationic iron porphyrin. J. Am. Chem. Soc. 2021, 143, 11423–11434.
Costentin, C.; Drouet, S.; Passard, G.; Robert, M.; Savéant, J. M. Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C–O bond in the catalyzed electrochemical reduction of CO2. J. Am. Chem. Soc. 2013, 135, 9023–9031.
Guo, Y.; Wang, Y. C.; Shen, Y.; Cai, Z. Y.; Li, Z.; Liu, J.; Chen, J. W.; Xiao, C.; Liu, H. C.; Lin, W. B. et al. Tunable cobalt-polypyridyl catalysts supported on metal-organic layers for electrochemical CO2 reduction at low overpotentials. J. Am. Chem. Soc. 2020, 142, 21493–21501.
Derrick, J. S.; Loipersberger, M.; Chatterjee, R.; Iovan, D. A.; Smith, P. T.; Chakarawet, K.; Yano, J.; Long, J. R.; Head-Gordon, M.; Chang, C. J. Metal-ligand cooperativity via exchange coupling promotes iron- catalyzed electrochemical CO2 reduction at low overpotentials. J. Am. Chem. Soc. 2020, 142, 20489–20501.
Boutin, E.; Merakeb, L.; Ma, B.; Boudy, B.; Wang, M.; Bonin, J.; Anxolabéhère-Mallart, E.; Robert, M. Molecular catalysis of CO2 reduction: Recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. Chem. Soc. Rev. 2020, 49, 5772–5809.
Gonell, S.; Assaf, E. A.; Duffee, K. D.; Schauer, C. K.; Miller, A. J. M. Kinetics of the trans effect in ruthenium complexes provide insight into the factors that control activity and stability in CO2 electroreduction. J. Am. Chem. Soc. 2020, 142, 8980–8999.
Zhang, X.; Cibian, M.; Call, A.; Yamauchi, K.; Sakai, K. Photochemical CO2 reduction driven by water-soluble copper(I) photosensitizer with the catalysis accelerated by multi-electron chargeable cobalt porphyrin. ACS Catal. 2019, 9, 11263–11273.
Ouyang, T.; Huang, H. H.; Wang, J. W.; Zhong, D. C.; Lu, T. B. A dinuclear cobalt cryptate as a homogeneous photocatalyst for highly selective and efficient visible-light driven CO2 reduction to CO in CH3CN/H2O solution. Angew. Chem., Int. Ed. 2017, 56, 738–743.
Sato, S.; Morikawa, T.; Kajino, T.; Ishitani, O. A highly efficient mononuclear iridium complex photocatalyst for CO2 reduction under visible light. Angew. Chem., Int. Ed. 2013, 52, 988–992.
Hong, D. C.; Kawanishi, T.; Tsukakoshi, Y.; Kotani, H.; Ishizuka, T.; Kojima, T. Efficient photocatalytic CO2 reduction by a Ni(II) complex having pyridine pendants through capturing a Mg2+ ion as a Lewis-acid cocatalyst. J. Am. Chem. Soc. 2019, 141, 20309–20317.
Kamada, K.; Jung, J.; Wakabayashi, T.; Sekizawa, K.; Sato, S.; Morikawa, T.; Fukuzumi, S.; Saito, S. Photocatalytic CO2 reduction using a robust multifunctional iridium complex toward the selective formation of formic acid. J. Am. Chem. Soc. 2020, 142, 10261–10266.
Sen, P.; Mondal, B.; Saha, D.; Rana, A.; Dey, A. Role of 2nd sphere h-bonding residues in tuning the kinetics of CO2 reduction to CO by iron porphyrin complexes. Dalton Trans. 2019, 48, 5965–5977.
Wang, X. Z.; Meng, S. L.; Chen, J. Y.; Wang, H. X.; Wang, Y.; Zhou, S.; Li, X. B.; Liao, R. Z.; Tung, C. H.; Wu, L. Z. Mechanistic insights into iron(II) bis(pyridyl)amine-bipyridine skeleton for selective CO2 photoreduction. Angew. Chem., Int. Ed. 2021, 60, 26072–26079.
Ghosh, D.; Takeda, H.; Fabry, D. C.; Tamaki, Y.; Ishitani, O. Supramolecular photocatalyst with a Rh(III)-complex catalyst unit for CO2 reduction. ACS Sustainable Chem. Eng. 2019, 7, 2648–2657.
Kamogawa, K.; Shimoda, Y.; Miyata, K.; Onda, K.; Yamazaki, Y.; Tamaki, Y.; Ishitani, O. Mechanistic study of photocatalytic CO2 reduction using a Ru(II)-Re(I) supramolecular photocatalyst. Chem. Sci. 2021, 12, 9682–9693.
Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217–7223.
Woo, S. J.; Choi, S.; Kim, S. Y.; Kim, P. S.; Jo, J. H.; Kim, C. H.; Son, H. J.; Pac, C.; Kang, S. O. Highly selective and durable photochemical CO2 reduction by molecular Mn(I) catalyst fixed on a particular dye-sensitized TiO2 platform. ACS Catal. 2019, 9, 2580–2593.
Kuriki, R.; Sekizawa, K.; Ishitani, O.; Maeda, K. Visible-light-driven CO2 reduction with carbon nitride: Enhancing the activity of ruthenium catalysts. Angew. Chem., Int. Ed. 2015, 54, 2406–2409.
Roy, S.; Reisner, E. Visible-light-driven CO2 reduction by mesoporous carbon nitride modified with polymeric cobalt phthalocyanine. Angew. Chem., Int. Ed. 2019, 58, 12180–12184.
Feng, X. Y.; Pi, Y. H.; Song, Y.; Brzezinski, C.; Xu, Z. W.; Li, Z.; Lin, W. B. Metal-organic frameworks significantly enhance photocatalytic hydrogen evolution and CO2 reduction with earth-abundant copper photosensitizers. J. Am. Chem. Soc. 2020, 142, 690–695.
Choi, K. M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C. A.; Barmanbek, J. T. D.; Alshammari, A. S.; Yang, P. D.; Yaghi, O. M. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J. Am. Chem. Soc. 2017, 139, 356–362.
Zhao, J. W.; Ren, J. Y.; Zhang, G.; Zhao, Z. Q.; Liu, S. Y.; Zhang, W. D.; Chen, L. Donor-acceptor type covalent organic frameworks. Chem. -Eur. J. 2021, 27, 10781–10797.
Ma, B.; Blanco, M.; Calvillo, L.; Chen, L. J.; Chen, G.; Lau, T. C.; Dražić, G.; Bonin, J.; Robert, M.; Granozzi, G. Hybridization of molecular and graphene materials for CO2 photocatalytic reduction with selectivity control. J. Am. Chem. Soc. 2021, 143, 8414–8425.
Ma, B.; Chen, G.; Fave, C.; Chen, L. J.; Kuriki, R.; Maeda, K.; Ishitani, O.; Lau, T. C.; Bonin, J.; Robert, M. Efficient visible-light-driven CO2 reduction by a cobalt molecular catalyst covalently linked to mesoporous carbon nitride. J. Am. Chem. Soc. 2020, 142, 6188–6195.
Nakada, A.; Kumagai, H.; Robert, M.; Ishitani, O.; Maeda, K. Molecule/semiconductor hybrid materials for visible-light CO2 reduction: Design principles and interfacial engineering. Acc. Mater. Res. 2021, 2, 458–470.
Saito, D.; Yamazaki, Y.; Tamaki, Y.; Ishitani, O. Photocatalysis of a dinuclear Ru(II)-Re(I) complex for CO2 reduction on a solid surface. J. Am. Chem. Soc. 2020, 142, 19249–19258.
Takada, K.; Sakamoto, R.; Yi, S. T.; Katagiri, S.; Kambe, T.; Nishihara, H. Electrochromic bis(terpyridine)metal complex nanosheets. J. Am. Chem. Soc. 2015, 137, 4681–4689.
Roy, S.; Chakraborty, C. Interfacial coordination nanosheet based on nonconjugated three-arm terpyridine: A highly color-efficient electrochromic material to converge fast switching with long optical memory. ACS Appl. Mater. Interfaces 2020, 12, 35181–35192.
Duan, J. G.; Li, Y. S.; Pan, Y. C.; Behera, N.; Jin, W. Q. Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials. Coord. Chem. Rev. 2019, 395, 25–45.
Maeda, H.; Sakamoto, R.; Nishihara, H. Interfacial synthesis of electrofunctional coordination nanowires and nanosheets of bis(terpyridine) complexes. Coord. Chem. Rev. 2017, 346, 139–149.
Sakamoto, R.; Takada, K.; Sun, X. S.; Pal, T.; Tsukamoto, T.; Phua, E. J. H.; Rapakousiou, A.; Hoshiko, K.; Nishihara, H. The coordination nanosheet (CONASH). Coord. Chem. Rev. 2016, 320–321, 118–128.
Mondal, S.; Ninomiya, Y.; Yoshida, T.; Mori, T.; Bera, M. K.; Ariga, K.; Higuchi, M. Dual-branched dense hexagonal Fe(II)-based coordination nanosheets with red-to-colorless electrochromism and durable device fabrication. ACS Appl. Mater. Interfaces 2020, 12, 31896–31903.
Hsu, C. Y.; Zhang, J.; Sato, T.; Moriyama, S.; Higuchi, M. Black-to-transmissive electrochromism with visible-to-near-infrared switching of a Co(II)-based metallo-supramolecular polymer for smart window and digital signage applications. ACS Appl. Mater. Interfaces 2015, 7, 18266–18272.
Wang, Y. N.; Gao, X. W.; Li, J. L.; Chao, D. B. Merging an organic TADF photosensitizer and a simple terpyridine-Fe(III) complex for photocatalytic CO2 reduction. Chem. Commun. 2020, 56, 12170–12173.
Wang, Y. N.; Chen, L. X.; Liu, T.; Chao, D. B. Coordination-driven discrete metallo-supramolecular assembly for rapid and selective photochemical CO2 reduction in aqueous solution. Dalton Trans. 2021, 50, 6273–6280.
Wang, Y. N.; Liu, T.; Chen, L. X.; Chao, D. B. Water-assisted highly efficient photocatalytic reduction of CO2 to CO with noble metal-free bis(terpyridine)iron(II) complexes and an organic photosensitizer. Inorg. Chem. 2021, 60, 5590–5597.
Francke, R.; Schille, B.; Roemelt, M. Homogeneously catalyzed electroreduction of carbon dioxide—Methods, mechanisms, and catalysts. Chem. Rev. 2018, 118, 4631–4701.
Bonin, J.; Maurin, A.; Robert, M. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co metal based complexes. Recent advances. Coord. Chem. Rev. 2017, 334, 184–198.
Grills, D. C.; Ertem, M. Z.; McKinnon, M.; Ngo, K. T.; Rochford, J. Mechanistic aspects of CO2 reduction catalysis with manganese-based molecular catalysts. Coord. Chem. Rev. 2018, 374, 173–217.
Bauer, T.; Zheng, Z. K.; Renn, A.; Enning, R.; Stemmer, A.; Sakamoto, J.; Schlüter, A. D. Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. Angew. Chem., Int. Ed. 2011, 50, 7879–7884.
Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.
Allan, J. T. S.; Quaranta, S.; Ebralidze, I. I.; Egan, J. G.; Poisson, J.; Laschuk, N. O.; Gaspari, F.; Easton, E. B.; Zenkina, O. V. Terpyridine-based monolayer electrochromic materials. ACS Appl. Mater. Interfaces 2017, 9, 40438–40445.
Elgrishi, N.; Chambers, M. B.; Artero, V.; Fontecave, M. Terpyridine complexes of first row transition metals and electrochemical reduction of CO2 to CO. Phys. Chem. Chem. Phys. 2014, 16, 13635–13644.
Braterman, P. S.; Song, J. I.; Peacock, R. D. Electronic absorption spectra of the iron(II) complexes of 2,2'-bipyridine, 2,2'-bipyrimidine, 1,10-phenanthroline, and 2,2':6',2''-terpyridine and their reduction products. Inorg. Chem. 1992, 31, 555–559.
Bryden, M. A.; Zysman-Colman, E. Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chem. Soc. Rev. 2021, 50, 7587–7680.
Call, A.; Cibian, M.; Yamamoto, K.; Nakazono, T.; Yamauchi, K.; Sakai, K. Highly efficient and selective photocatalytic CO2 reduction to CO in water by a cobalt porphyrin molecular catalyst. ACS Catal. 2019, 9, 4867–4874.
Loipersberger, M.; Zee, D. Z.; Panetier, J. A.; Chang, C. J.; Long, J. R.; Head-Gordon, M. Computational study of an iron(II) polypyridine electrocatalyst for CO2 reduction: Key roles for intramolecular interactions in CO2 binding and proton transfer. Inorg. Chem. 2020, 59, 8146–8160.
Liu, Y.; Guo, J. H.; Dao, X. Y.; Zhang, X. D.; Zhao, Y.; Sun, W. Y. Coordination polymers with a pyridyl-salen ligand for photocatalytic carbon dioxide reduction. Chem. Commun. 2020, 56, 4110–4113.
Curcio, M.; Henschel, D.; Hüttenschmidt, M.; Sproules, S.; Love, J. B. Radical relatives: Facile oxidation of hetero-diarylmethene anions to neutral radicals. Inorg. Chem. 2018, 57, 9592–9600.
Wang, M.; Weyhermüller, T.; Bill, E.; Ye, S. F.; Wieghardt, K. Structural and spectroscopic characterization of rhenium complexes containing neutral, monoanionic, and dianionic ligands of 2,2′-bipyridines and 2,2′:6,2″-terpyridines: An experimental and density functional theory (DFT)-computational study. Inorg. Chem. 2016, 55, 5019–5036.
Scarborough, C. C.; Lancaster, K. M.; DeBeer, S.; Weyhermüller, T.; Sproules, S.; Wieghardt, K. Experimental fingerprints for redox-active terpyridine in [Cr(tpy)2](PF6)n (n = 3–0), and the remarkable electronic structure of [Cr(tpy)2]1−. Inorg. Chem. 2012, 51, 3718–3732.
Rao, H.; Lim, C. H.; Bonin, J.; Miyake, G. M.; Robert, M. Visible-light-driven conversion of CO2 to CH4 with an organic sensitizer and an iron porphyrin catalyst. J. Am. Chem. Soc. 2018, 140, 17830–17834.
Chen, L. J.; Qin, Y. F.; Chen, G.; Li, M. Y.; Cai, L. R.; Qiu, Y. F.; Fan, H. B.; Robert, M.; Lau, T. C. A molecular noble metal-free system for efficient visible light-driven reduction of CO2 to CO. Dalton Trans. 2019, 48, 9596–9602.
Elgrishi, N.; Chambers, M. B.; Fontecave, M. Turning it off! Disfavouring hydrogen evolution to enhance selectivity for CO production during homogeneous CO2 reduction by cobalt-terpyridine complexes. Chem. Sci. 2015, 6, 2522–2531.
Wang, J. L.; Li, X. P.; Shreiner, C. D.; Lu, X. C.; Moorefield, C. N.; Tummalapalli, S. R.; Medvetz, D. A.; Panzner, M. J.; Fronczek, F. R.; Wesdemiotis, C. et al. Shape-persistent, ruthenium(II)- and iron(II)-bisterpyridine metallodendrimers: Synthesis, traveling-wave ion-mobility mass spectrometry, and photophysical properties. New J. Chem. 2012, 36, 484–491.
Machan, C. W.; Adelhardt, M.; Sarjeant, A. A.; Stern, C. L.; Sutter, J.; Meyer, K.; Mirkin, C. A. One-pot synthesis of an Fe(II) bis-terpyridine complex with allosterically regulated electronic properties. J. Am. Chem. Soc. 2012, 134, 16921–16924.
Albano, G.; Balzani, V.; Constable, E. C.; Maestri, M.; Smith, D. R. Photoinduced processes in 4′-(9-anthryl)-2,2′:6′,2″-terpyridine, its protonated forms and Zn(II), Ru(II) and Os(II) complexes. Inorg. Chim. Acta 1998, 277, 225–231.