AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An electrochromic coordination nanosheet for robust CO2 photoreduction via ligand-based electron transfer

Longxin ChenTing LiuDuobin Chao( )
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
Show Author Information

Graphical Abstract

An electrochromic coordination nanosheet bearing numerous redox-active terpyridine ligands has been developed for highly selective CO2 photoreduction with a CO evolution rate of 114.3 mmol·g−1·h−1 under visible light irradiation, owing to terpyridine ligand-based electron transfer.

Abstract

A coordination nanosheet composed of [Fe(tpy)2]2+ (tpy = 2,2':6',2''-terpyridine) units, showing reversible electrochromism at the ligand-based cathodic potential, has been prepared through a liquid/liquid interfacial synthesis. The noble metal-free nanosheet exhibited a CO evolution rate of 114.3 mmol·g−1·h−1 with the selectivity up to 99.3% under visible light irradiation in the presence of water, which is in the front rank of heterogeneous catalysis for CO2 photoreduction. Such robust photocatalytic performance is due to efficient ligand-based electron transfer through long-lived π radical anion tpy·− with a lifetime more than 25 min, as evidenced by in situ electron paramagnetic resonance (EPR) and ultraviolet–visible–near infrared (UV–vis–NIR) spectroscopy studies. Fe(II) cation in [Fe(tpy)2]2+ mainly contributes to enhancing reduction potentials of ligand and stabilizing π radical anion tpy·−. This ligand-based electron transfer with the aid of metal cation represents a promising strategy for selective CO2 photoreduction, especially towards gaining CO from CO2.

Electronic Supplementary Material

Download File(s)
12274_2022_4245_MOESM1_ESM.pdf (1,008.2 KB)

References

1

Mondal, B.; Rana, A.; Sen, P.; Dey, A. Intermediates involved in the 2e/2h+ reduction of CO2 to CO by iron(0) porphyrin. J. Am. Chem. Soc. 2015, 137, 11214–11217.

2

Hooe, S. L.; Dressel, J. M.; Dickie, D. A.; Machan, C. W. Highly efficient electrocatalytic reduction of CO2 to CO by a molecular chromium complex. ACS Catal. 2020, 10, 1146–1151.

3

Kinzel, N. W.; Werlé, C.; Leitner, W. Transition metal complexes as catalysts for the electroconversion of CO2: An organometallic perspective. Angew. Chem., Int. Ed. 2021, 60, 11628–11686.

4

Nie, W. X.; Tarnopol, D. E.; McCrory, C. C. L. Enhancing a molecular electrocatalyst’s activity for CO2 reduction by simultaneously modulating three substituent effects. J. Am. Chem. Soc. 2021, 143, 3764–3778.

5

Martin, D. J.; Mayer, J. M. Oriented electrostatic effects on O2 and CO2 reduction by a polycationic iron porphyrin. J. Am. Chem. Soc. 2021, 143, 11423–11434.

6

Costentin, C.; Drouet, S.; Passard, G.; Robert, M.; Savéant, J. M. Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C–O bond in the catalyzed electrochemical reduction of CO2. J. Am. Chem. Soc. 2013, 135, 9023–9031.

7

Guo, Y.; Wang, Y. C.; Shen, Y.; Cai, Z. Y.; Li, Z.; Liu, J.; Chen, J. W.; Xiao, C.; Liu, H. C.; Lin, W. B. et al. Tunable cobalt-polypyridyl catalysts supported on metal-organic layers for electrochemical CO2 reduction at low overpotentials. J. Am. Chem. Soc. 2020, 142, 21493–21501.

8

Derrick, J. S.; Loipersberger, M.; Chatterjee, R.; Iovan, D. A.; Smith, P. T.; Chakarawet, K.; Yano, J.; Long, J. R.; Head-Gordon, M.; Chang, C. J. Metal-ligand cooperativity via exchange coupling promotes iron- catalyzed electrochemical CO2 reduction at low overpotentials. J. Am. Chem. Soc. 2020, 142, 20489–20501.

9

Boutin, E.; Merakeb, L.; Ma, B.; Boudy, B.; Wang, M.; Bonin, J.; Anxolabéhère-Mallart, E.; Robert, M. Molecular catalysis of CO2 reduction: Recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. Chem. Soc. Rev. 2020, 49, 5772–5809.

10

Gonell, S.; Assaf, E. A.; Duffee, K. D.; Schauer, C. K.; Miller, A. J. M. Kinetics of the trans effect in ruthenium complexes provide insight into the factors that control activity and stability in CO2 electroreduction. J. Am. Chem. Soc. 2020, 142, 8980–8999.

11

Zhang, X.; Cibian, M.; Call, A.; Yamauchi, K.; Sakai, K. Photochemical CO2 reduction driven by water-soluble copper(I) photosensitizer with the catalysis accelerated by multi-electron chargeable cobalt porphyrin. ACS Catal. 2019, 9, 11263–11273.

12

Ouyang, T.; Huang, H. H.; Wang, J. W.; Zhong, D. C.; Lu, T. B. A dinuclear cobalt cryptate as a homogeneous photocatalyst for highly selective and efficient visible-light driven CO2 reduction to CO in CH3CN/H2O solution. Angew. Chem., Int. Ed. 2017, 56, 738–743.

13

Sato, S.; Morikawa, T.; Kajino, T.; Ishitani, O. A highly efficient mononuclear iridium complex photocatalyst for CO2 reduction under visible light. Angew. Chem., Int. Ed. 2013, 52, 988–992.

14
Lu, Y. L.; Liu, M. H.; Zheng, N. C.; He, X.; Hu, R. T.; Wang, R. L.; Zhou, Q.; Hu, Z. F. Promoting the protonation step on the interface of titanium dioxide for selective photocatalytic reduction of CO2 to CH4 by using red phosphorus quantum dots. Nano Res., in press, http://doi.org/10.1007/s12274-021-3943-5.
15

Hong, D. C.; Kawanishi, T.; Tsukakoshi, Y.; Kotani, H.; Ishizuka, T.; Kojima, T. Efficient photocatalytic CO2 reduction by a Ni(II) complex having pyridine pendants through capturing a Mg2+ ion as a Lewis-acid cocatalyst. J. Am. Chem. Soc. 2019, 141, 20309–20317.

16

Kamada, K.; Jung, J.; Wakabayashi, T.; Sekizawa, K.; Sato, S.; Morikawa, T.; Fukuzumi, S.; Saito, S. Photocatalytic CO2 reduction using a robust multifunctional iridium complex toward the selective formation of formic acid. J. Am. Chem. Soc. 2020, 142, 10261–10266.

17

Sen, P.; Mondal, B.; Saha, D.; Rana, A.; Dey, A. Role of 2nd sphere h-bonding residues in tuning the kinetics of CO2 reduction to CO by iron porphyrin complexes. Dalton Trans. 2019, 48, 5965–5977.

18

Wang, X. Z.; Meng, S. L.; Chen, J. Y.; Wang, H. X.; Wang, Y.; Zhou, S.; Li, X. B.; Liao, R. Z.; Tung, C. H.; Wu, L. Z. Mechanistic insights into iron(II) bis(pyridyl)amine-bipyridine skeleton for selective CO2 photoreduction. Angew. Chem., Int. Ed. 2021, 60, 26072–26079.

19

Ghosh, D.; Takeda, H.; Fabry, D. C.; Tamaki, Y.; Ishitani, O. Supramolecular photocatalyst with a Rh(III)-complex catalyst unit for CO2 reduction. ACS Sustainable Chem. Eng. 2019, 7, 2648–2657.

20

Kamogawa, K.; Shimoda, Y.; Miyata, K.; Onda, K.; Yamazaki, Y.; Tamaki, Y.; Ishitani, O. Mechanistic study of photocatalytic CO2 reduction using a Ru(II)-Re(I) supramolecular photocatalyst. Chem. Sci. 2021, 12, 9682–9693.

21

Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217–7223.

22

Woo, S. J.; Choi, S.; Kim, S. Y.; Kim, P. S.; Jo, J. H.; Kim, C. H.; Son, H. J.; Pac, C.; Kang, S. O. Highly selective and durable photochemical CO2 reduction by molecular Mn(I) catalyst fixed on a particular dye-sensitized TiO2 platform. ACS Catal. 2019, 9, 2580–2593.

23

Kuriki, R.; Sekizawa, K.; Ishitani, O.; Maeda, K. Visible-light-driven CO2 reduction with carbon nitride: Enhancing the activity of ruthenium catalysts. Angew. Chem., Int. Ed. 2015, 54, 2406–2409.

24

Roy, S.; Reisner, E. Visible-light-driven CO2 reduction by mesoporous carbon nitride modified with polymeric cobalt phthalocyanine. Angew. Chem., Int. Ed. 2019, 58, 12180–12184.

25

Feng, X. Y.; Pi, Y. H.; Song, Y.; Brzezinski, C.; Xu, Z. W.; Li, Z.; Lin, W. B. Metal-organic frameworks significantly enhance photocatalytic hydrogen evolution and CO2 reduction with earth-abundant copper photosensitizers. J. Am. Chem. Soc. 2020, 142, 690–695.

26

Choi, K. M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C. A.; Barmanbek, J. T. D.; Alshammari, A. S.; Yang, P. D.; Yaghi, O. M. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J. Am. Chem. Soc. 2017, 139, 356–362.

27

Zhao, J. W.; Ren, J. Y.; Zhang, G.; Zhao, Z. Q.; Liu, S. Y.; Zhang, W. D.; Chen, L. Donor-acceptor type covalent organic frameworks. Chem. -Eur. J. 2021, 27, 10781–10797.

28

Ma, B.; Blanco, M.; Calvillo, L.; Chen, L. J.; Chen, G.; Lau, T. C.; Dražić, G.; Bonin, J.; Robert, M.; Granozzi, G. Hybridization of molecular and graphene materials for CO2 photocatalytic reduction with selectivity control. J. Am. Chem. Soc. 2021, 143, 8414–8425.

29

Ma, B.; Chen, G.; Fave, C.; Chen, L. J.; Kuriki, R.; Maeda, K.; Ishitani, O.; Lau, T. C.; Bonin, J.; Robert, M. Efficient visible-light-driven CO2 reduction by a cobalt molecular catalyst covalently linked to mesoporous carbon nitride. J. Am. Chem. Soc. 2020, 142, 6188–6195.

30

Nakada, A.; Kumagai, H.; Robert, M.; Ishitani, O.; Maeda, K. Molecule/semiconductor hybrid materials for visible-light CO2 reduction: Design principles and interfacial engineering. Acc. Mater. Res. 2021, 2, 458–470.

31

Saito, D.; Yamazaki, Y.; Tamaki, Y.; Ishitani, O. Photocatalysis of a dinuclear Ru(II)-Re(I) complex for CO2 reduction on a solid surface. J. Am. Chem. Soc. 2020, 142, 19249–19258.

32

Takada, K.; Sakamoto, R.; Yi, S. T.; Katagiri, S.; Kambe, T.; Nishihara, H. Electrochromic bis(terpyridine)metal complex nanosheets. J. Am. Chem. Soc. 2015, 137, 4681–4689.

33

Roy, S.; Chakraborty, C. Interfacial coordination nanosheet based on nonconjugated three-arm terpyridine: A highly color-efficient electrochromic material to converge fast switching with long optical memory. ACS Appl. Mater. Interfaces 2020, 12, 35181–35192.

34

Duan, J. G.; Li, Y. S.; Pan, Y. C.; Behera, N.; Jin, W. Q. Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials. Coord. Chem. Rev. 2019, 395, 25–45.

35

Maeda, H.; Sakamoto, R.; Nishihara, H. Interfacial synthesis of electrofunctional coordination nanowires and nanosheets of bis(terpyridine) complexes. Coord. Chem. Rev. 2017, 346, 139–149.

36

Sakamoto, R.; Takada, K.; Sun, X. S.; Pal, T.; Tsukamoto, T.; Phua, E. J. H.; Rapakousiou, A.; Hoshiko, K.; Nishihara, H. The coordination nanosheet (CONASH). Coord. Chem. Rev. 2016, 320–321, 118–128.

37

Mondal, S.; Ninomiya, Y.; Yoshida, T.; Mori, T.; Bera, M. K.; Ariga, K.; Higuchi, M. Dual-branched dense hexagonal Fe(II)-based coordination nanosheets with red-to-colorless electrochromism and durable device fabrication. ACS Appl. Mater. Interfaces 2020, 12, 31896–31903.

38

Hsu, C. Y.; Zhang, J.; Sato, T.; Moriyama, S.; Higuchi, M. Black-to-transmissive electrochromism with visible-to-near-infrared switching of a Co(II)-based metallo-supramolecular polymer for smart window and digital signage applications. ACS Appl. Mater. Interfaces 2015, 7, 18266–18272.

39

Wang, Y. N.; Gao, X. W.; Li, J. L.; Chao, D. B. Merging an organic TADF photosensitizer and a simple terpyridine-Fe(III) complex for photocatalytic CO2 reduction. Chem. Commun. 2020, 56, 12170–12173.

40

Wang, Y. N.; Chen, L. X.; Liu, T.; Chao, D. B. Coordination-driven discrete metallo-supramolecular assembly for rapid and selective photochemical CO2 reduction in aqueous solution. Dalton Trans. 2021, 50, 6273–6280.

41

Wang, Y. N.; Liu, T.; Chen, L. X.; Chao, D. B. Water-assisted highly efficient photocatalytic reduction of CO2 to CO with noble metal-free bis(terpyridine)iron(II) complexes and an organic photosensitizer. Inorg. Chem. 2021, 60, 5590–5597.

42

Francke, R.; Schille, B.; Roemelt, M. Homogeneously catalyzed electroreduction of carbon dioxide—Methods, mechanisms, and catalysts. Chem. Rev. 2018, 118, 4631–4701.

43

Bonin, J.; Maurin, A.; Robert, M. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co metal based complexes. Recent advances. Coord. Chem. Rev. 2017, 334, 184–198.

44

Grills, D. C.; Ertem, M. Z.; McKinnon, M.; Ngo, K. T.; Rochford, J. Mechanistic aspects of CO2 reduction catalysis with manganese-based molecular catalysts. Coord. Chem. Rev. 2018, 374, 173–217.

45

Bauer, T.; Zheng, Z. K.; Renn, A.; Enning, R.; Stemmer, A.; Sakamoto, J.; Schlüter, A. D. Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. Angew. Chem., Int. Ed. 2011, 50, 7879–7884.

46

Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.

47

Allan, J. T. S.; Quaranta, S.; Ebralidze, I. I.; Egan, J. G.; Poisson, J.; Laschuk, N. O.; Gaspari, F.; Easton, E. B.; Zenkina, O. V. Terpyridine-based monolayer electrochromic materials. ACS Appl. Mater. Interfaces 2017, 9, 40438–40445.

48

Elgrishi, N.; Chambers, M. B.; Artero, V.; Fontecave, M. Terpyridine complexes of first row transition metals and electrochemical reduction of CO2 to CO. Phys. Chem. Chem. Phys. 2014, 16, 13635–13644.

49

Braterman, P. S.; Song, J. I.; Peacock, R. D. Electronic absorption spectra of the iron(II) complexes of 2,2'-bipyridine, 2,2'-bipyrimidine, 1,10-phenanthroline, and 2,2':6',2''-terpyridine and their reduction products. Inorg. Chem. 1992, 31, 555–559.

50

Bryden, M. A.; Zysman-Colman, E. Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chem. Soc. Rev. 2021, 50, 7587–7680.

51

Call, A.; Cibian, M.; Yamamoto, K.; Nakazono, T.; Yamauchi, K.; Sakai, K. Highly efficient and selective photocatalytic CO2 reduction to CO in water by a cobalt porphyrin molecular catalyst. ACS Catal. 2019, 9, 4867–4874.

52

Loipersberger, M.; Zee, D. Z.; Panetier, J. A.; Chang, C. J.; Long, J. R.; Head-Gordon, M. Computational study of an iron(II) polypyridine electrocatalyst for CO2 reduction: Key roles for intramolecular interactions in CO2 binding and proton transfer. Inorg. Chem. 2020, 59, 8146–8160.

53

Liu, Y.; Guo, J. H.; Dao, X. Y.; Zhang, X. D.; Zhao, Y.; Sun, W. Y. Coordination polymers with a pyridyl-salen ligand for photocatalytic carbon dioxide reduction. Chem. Commun. 2020, 56, 4110–4113.

54

Curcio, M.; Henschel, D.; Hüttenschmidt, M.; Sproules, S.; Love, J. B. Radical relatives: Facile oxidation of hetero-diarylmethene anions to neutral radicals. Inorg. Chem. 2018, 57, 9592–9600.

55

Wang, M.; Weyhermüller, T.; Bill, E.; Ye, S. F.; Wieghardt, K. Structural and spectroscopic characterization of rhenium complexes containing neutral, monoanionic, and dianionic ligands of 2,2′-bipyridines and 2,2′:6,2″-terpyridines: An experimental and density functional theory (DFT)-computational study. Inorg. Chem. 2016, 55, 5019–5036.

56

Scarborough, C. C.; Lancaster, K. M.; DeBeer, S.; Weyhermüller, T.; Sproules, S.; Wieghardt, K. Experimental fingerprints for redox-active terpyridine in [Cr(tpy)2](PF6)n (n = 3–0), and the remarkable electronic structure of [Cr(tpy)2]1−. Inorg. Chem. 2012, 51, 3718–3732.

57

Rao, H.; Lim, C. H.; Bonin, J.; Miyake, G. M.; Robert, M. Visible-light-driven conversion of CO2 to CH4 with an organic sensitizer and an iron porphyrin catalyst. J. Am. Chem. Soc. 2018, 140, 17830–17834.

58

Chen, L. J.; Qin, Y. F.; Chen, G.; Li, M. Y.; Cai, L. R.; Qiu, Y. F.; Fan, H. B.; Robert, M.; Lau, T. C. A molecular noble metal-free system for efficient visible light-driven reduction of CO2 to CO. Dalton Trans. 2019, 48, 9596–9602.

59

Elgrishi, N.; Chambers, M. B.; Fontecave, M. Turning it off! Disfavouring hydrogen evolution to enhance selectivity for CO production during homogeneous CO2 reduction by cobalt-terpyridine complexes. Chem. Sci. 2015, 6, 2522–2531.

60

Wang, J. L.; Li, X. P.; Shreiner, C. D.; Lu, X. C.; Moorefield, C. N.; Tummalapalli, S. R.; Medvetz, D. A.; Panzner, M. J.; Fronczek, F. R.; Wesdemiotis, C. et al. Shape-persistent, ruthenium(II)- and iron(II)-bisterpyridine metallodendrimers: Synthesis, traveling-wave ion-mobility mass spectrometry, and photophysical properties. New J. Chem. 2012, 36, 484–491.

61

Machan, C. W.; Adelhardt, M.; Sarjeant, A. A.; Stern, C. L.; Sutter, J.; Meyer, K.; Mirkin, C. A. One-pot synthesis of an Fe(II) bis-terpyridine complex with allosterically regulated electronic properties. J. Am. Chem. Soc. 2012, 134, 16921–16924.

62

Albano, G.; Balzani, V.; Constable, E. C.; Maestri, M.; Smith, D. R. Photoinduced processes in 4′-(9-anthryl)-2,2′:6′,2″-terpyridine, its protonated forms and Zn(II), Ru(II) and Os(II) complexes. Inorg. Chim. Acta 1998, 277, 225–231.

Nano Research
Pages 5902-5911
Cite this article:
Chen L, Liu T, Chao D. An electrochromic coordination nanosheet for robust CO2 photoreduction via ligand-based electron transfer. Nano Research, 2022, 15(7): 5902-5911. https://doi.org/10.1007/s12274-022-4245-2
Topics:

912

Views

9

Crossref

9

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 09 January 2022
Revised: 09 February 2022
Accepted: 16 February 2022
Published: 08 April 2022
© Tsinghua University Press 2022
Return