Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Observing the morphology of insulating specimen in scanning electron microscope (SEM) is of great significance for the nanoscale semiconductor devices and biological tissues. However, the charging effect will cause image distortion and abnormal contrast when observing insulating specimen in SEM. A typical solution to this problem is using metal coating or water-removable conductive coating. Unfortunately, in both cases the surface of the specimen is covered by a thin layer of conductive material which hides the real surface morphology and is very difficult to be completely removed after imaging. Here we show a convenient, residue-free, and versatile method to observe real surface morphology of insulating specimen without charging effect in SEM with the help of a nanometer-thick film of super-aligned carbon nanotube (SACNT). This thin layer of SACNT film, like metal, can conduct the surface charge on insulating specimen through the sample stage to the ground, thus eliminating the charging effect. SACNT film can also be used as the conductive tape to carry and immobilize insulating powder or particles during SEM imaging. Different from the metal coating, SACNT film is transparent, so that the real microstructure of the insulating specimen surface can be observed. In addition, SACNT film can be easily attached to and peeled off from the surface of specimen without any residue. This convenient, residue-free, and versatile method can open up new possibilities in non-destructive SEM imaging of a wide variety of insulating materials, semiconductor devices, and biological tissues.
Ichinokawa, T.; Iiyama, M.; Onoguchi, A.; Kobayashi, T. Charging effect of specimen in scanning electron microscopy. Jpn. J. Appl. Phys. 1974, 13, 1272–1277.
Rau, E. I.; Fakhfakh, S.; Andrianov, M. V.; Evstafeva, E. N.; Jbara, O.; Rondot, S.; Mouze, D. Second crossover energy of insulating materials using stationary electron beam under normal incidence. Nucl. Instr. Meth. Phys. Res. Sect. B 2008, 266, 719–729.
Shaffner, T. J.; van Veld, R. D. “Charging” effects in the scanning electron microscope. J. Phys. E:Sci. Instrum. 1971, 4, 633–637.
Le Bihan, R.; Maussion, M. Study of the surface of ferroelectric crystals with the scanning electron microscope. Ferroelectrics 1974, 7, 307–308.
Farley, A. N.; Shah, J. S. High-pressure scanning electron microscopy of insulating materials: A new approach. J. Microsc. 1991, 164, 107–126.
Morin, P.; Pitaval, M.; Vicario, E. Direct observation of insulators with a scanning electron microscope. J. Phys. E:Sci. Instrum. 1976, 9, 1017–1020.
Jiang, K. L.; Li, Q. Q.; Fan, S. S. Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.
Zhang, X.; Jiang, K.; Feng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T.; Li, Q.; Fan, S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.
Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700–705.
Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Li, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154–1161.
Jin, X.; Tan, H. X.; Wu, Z. P.; Liang, J. C.; Miao, W. T.; Lian, C. S.; Wang, J. T.; Liu, K.; Wei, H. M.; Feng, C. et al. Continuous, ultra-lightweight, and multipurpose super-aligned carbon nanotube tapes viable over a wide range of temperatures. Nano Lett. 2019, 19, 6756–6764.
Chen, L.; Lee, H.; Guo, Z. J.; McGruer, N. E.; Gilbert, K. W.; Mall, S.; Leedy, K. D.; Adams, G. G. Contact resistance study of noble metals and alloy films using a scanning probe microscope test station. J. Appl. Phys. 2007, 102, 074910.
Echlin, P. The use of the scanning reflection electron microscope in the study of plant and microbial material. J. Roy. Microsc. Soc. 1968, 88, 407–418.
Beasley, C. A. Developmental morphology of cotton flowers and seed as seen with the scanning electron microscope. Am. J. Bot. 1975, 62, 584–592.
Tai, S. S. W.; Tang, X. M. Manipulating biological samples for environmental scanning electron microscopy observation. Scanning 2001, 23, 267–272.
Wang, X. S.; Li, Q. Q.; Xie, J.; Jin, Z.; Wang, J. Y.; Li, Y.; Jiang, K. L.; Fan, S. S. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett. 2009, 9, 3137–3141.
Deng, G. W.; Zhu, D.; Wang, X. H.; Zou, C. L.; Wang, J. T.; Li, H. O.; Cao, G.; Liu, D.; Li, Y.; Xiao, M. et al. Strongly coupled nanotube electromechanical resonators. Nano Lett. 2016, 16, 5456–5462.
Li, D. Q.; Wei, Y.; Zhang, J.; Wang, J. T.; Lin, Y. H.; Liu, P.; Fan, S. S.; Jiang, K. L. Direct discrimination between semiconducting and metallic single-walled carbon nanotubes with high spatial resolution by SEM. Nano Res. 2016, 10, 1896–1902.
Li, D. Q.; Zhang, J.; He, Y. J.; Qin, Y.; Wei, Y.; Liu, P.; Zhang, L. N.; Wang, J. P.; Li, Q. Q.; Fan, S. S. et al. Scanning electron microscopy imaging of single-walled carbon nanotubes on substrates. Nano Res. 2017, 10, 1804–1818.