Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Bulk synthesis of single-walled carbon nanotubes (SWNTs) using solid catalyst has been challenging, despite of recent breakthrough in the chirality-specific growth on the flat substrate surface. In this work, we propose a porous magnesia support rhenium catalyst for bulk synthesis of SWNTs. It is found that the well-dispersed catalyst with a high melting point and the optimal chemical vapor deposition reaction conditions account for the growth of SWNTs. Detailed characterizations reveal the produced SWNTs are dominant in (n, n − 1) and (n, n − 2) species. Furthermore, by using a multicolumn chromatography post-growth separation method, SWNTs with three defined diameter ranges were obtained. This work guides the design of porous oxide supported catalyst for bulk synthesis and diameter-dependent sorting of SWNTs, which will ultimately help harness the extraordinary properties of SWNTs.
He, M. S.; Zhang, S. C.; Zhang, J. Horizontal single-walled carbon nanotube arrays: Controlled synthesis, characterizations, and applications. Chem. Rev. 2020, 120, 12592–12684.
Yang, F.; Wang, M.; Zhang, D. Q.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 2020, 120, 2693–2758.
Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394.
Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. Q.; Xu, Z.; Peng, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.
Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234–238.
Sanchez-Valencia, J. R.; Dienel, T.; Gröning, O.; Shorubalko, I.; Mueller, A.; Jansen, M.; Amsharov, K.; Ruffieux, P.; Fasel, R. Controlled synthesis of single-chirality carbon nanotubes. Nature 2014, 512, 61–64.
He, M. S.; Wang, X.; Zhang, S. C.; Jiang, H.; Cavalca, F.; Cui, H. Z.; Wagner, J. B.; Hansen, T. W.; Kauppinen, E.; Zhang, J. et al. Growth kinetics of single-walled carbon nanotubes with a (2n, n) chirality selection. Sci. Adv. 2019, 5, eaav9668.
He, M. S.; Zhang, S. C.; Wu, Q. R.; Xue, H.; Xin, B. W.; Wang, D.; Zhang, J. Designing catalysts for chirality-selective synthesis of single-walled carbon nanotubes: Past success and future opportunity. Adv. Mater. 2019, 31, 1800805.
Wang, H.; Yuan, Y.; Wei, L.; Goh, K.; Yu, D. S.; Chen, Y. Catalysts for chirality selective synthesis of single-walled carbon nanotubes. Carbon 2015, 81, 1–19.
An, L.; Owens, J. M.; McNeil, L. E.; Liu, J. Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J. Am. Chem. Soc. 2002, 124, 13688–13689.
Han, S.; Liu, X L.; Zhou, C. W. Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J. Am. Chem. Soc. 2005, 127, 5294–5295.
Takagi, D.; Kobayashi, Y.; Homma, Y. Carbon nanotube growth from diamond. J. Am. Chem. Soc. 2009, 131, 6922–6923.
Takagi, D.; Homma, Y.; Hibino, H.; Suzuki, S.; Kobayashi, Y. Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett. 2006, 6, 2642–2645.
Zhou, W. W.; Han, Z. Y.; Wang, J. Y.; Zhang, Y.; Jin, Z.; Sun, X.; Zhang, Y. W.; Yan, C. H.; Li, Y. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006, 6, 2987–2990.
Xue, H.; Xin, L. T.; Xu, Z. W.; Bai, R. Q.; Wu, Q. R.; Xin, B. W.; Zhang, X. Y.; Cui, H. Z.; Chen, F. S.; He, M. S. Iridium-catalyzed growth of single-walled carbon nanotubes with a bicentric diameter distribution. Mater. Chem. Front. 2019, 3, 1882–1887.
Liu, B. L.; Ren, W. C.; Gao, L. B.; Li, S. S.; Pei, S. F.; Liu, C.; Jiang, C. B.; Cheng, H. M. Metal-catalyst-free growth of single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 2082–2083.
Zhang, X.; Graves, B.; De Volder, M.; Yang, W. M.; Johnson, T.; Wen, B.; Su, W.; Nishida, R.; Xie, S. S.; Boies, A. High-precision solid catalysts for investigation of carbon nanotube synthesis and structure. Sci. Adv. 2020, 6, eabb6010.
Qian, L.; Xie, Y.; Yu, Y.; Wang, S. S.; Zhang, S. C.; Zhang, J. Growth of single-walled carbon nanotubes with controlled structure: Floating carbide solid catalysts. Angew. Chem., Int. Ed. 2020, 59, 10884–10887.
Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 2003, 125, 11186–11187.
Li, X. L.; Tu, X. M.; Zaric, S.; Welsher, K.; Seo, W. S.; Zhao, W.; Dai, H. J. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J. Am. Chem. Soc. 2007, 129, 15770–15771.
Maruyama, S.; Miyauchi, Y.; Murakami, Y.; Chiashi, S. Optical characterization of single-walled carbon nanotubes synthesized by catalytic decomposition of alcohol. New J. Phys. 2003, 5, 149.
He, M. S.; Chernov, A. I.; Fedotov, P. V.; Obraztsova, E. D.; Sainio, J.; Rikkinen, E.; Jiang, H.; Zhu, Z.; Tian, Y.; Kauppinen, E. I. et al. Predominant (6, 5) single-walled carbon nanotube growth on a copper-promoted iron catalyst. J. Am. Chem. Soc. 2010, 132, 13994–13996.
He, M. S.; Jiang, H.; Liu, B. L.; Fedotov, P. V.; Chernov, A. I.; Obraztsova, E. D.; Cavalca, F.; Wagner, J. B.; Hansen, T. W.; Anoshkin, I. V. et al. Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci. Rep. 2013, 3, 1460.
He, M. S.; Wang, X.; Zhang, L. L.; Wu, Q. R.; Song, X. J.; Chernov, A. I.; Fedotov, P. V.; Obraztsova, E. D.; Sainio, J.; Jiang, H. et al. Anchoring effect of Ni2+ in stabilizing reduced metallic particles for growing single-walled carbon nanotubes. Carbon 2018, 128, 249–256.
Loebick, C. Z.; Podila, R.; Reppert, J.; Chudow, J.; Ren, F.; Haller, G. L.; Rao, A. M.; Pfefferle, L. D. Selective synthesis of subnanometer diameter semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 2010, 132, 11125–11131.
Chen, Y.; Ciuparu, D.; Lim, S.; Yang, Y. H.; Haller, G. L.; Pfefferle, L. Synthesis of uniform diameter single-wall carbon nanotubes in Co-MCM-41: Effects of the catalyst prereduction and nanotube growth temperatures. J. Catal. 2004, 225, 453–465.
Wang, H.; Wang, B.; Quek, X. Y.; Wei, L.; Zhao, J. W.; Li, L. J.; Chan-Park, M. B.; Yang, Y. H.; Chen, Y. Selective synthesis of (9, 8) single walled carbon nanotubes on cobalt incorporated TUD-1 catalysts. J. Am. Chem. Soc. 2010, 132, 16747–16749.
Cui, K. H.; Kumamoto, A.; Xiang, R.; An, H.; Wang, B.; Inoue, T.; Chiashi, S.; Ikuhara, Y.; Maruyama, S. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts. Nanoscale 2016, 8, 1608–1617.
An, H.; Kumamoto, A.; Takezaki, H.; Ohyama, S.; Qian, Y.; Inoue, T.; Ikuhara, Y.; Chiashi, S.; Xiang, R.; Maruyama, S. Chirality specific and spatially uniform synthesis of single-walled carbon nanotubes from a sputtered Co-W bimetallic catalyst. Nanoscale 2016, 8, 14523–14529.
An, H.; Kumamoto, A.; Xiang, R.; Inoue, T.; Otsuka, K.; Chiashi, S.; Bichara, C.; Loiseau, A.; Li, Y.; Ikuhara, Y. et al. Atomic-scale structural identification and evolution of Co-W-C ternary SWCNT catalytic nanoparticles: High-resolution STEM imaging on SiO2. Sci. Adv. 2019, 5, eaat9459.
Yang, F.; Zhao, H. F.; Wang, X. W.; Liu, X.; Liu, Q. D.; Liu, X. Y.; Jin, C. H.; Wang, R. M.; Li, Y. Atomic scale stability of tungsten–cobalt intermetallic nanocrystals in reactive environment at high temperature. J. Am. Chem. Soc. 2019, 141, 5871–5879.
Tao, X. Y.; Zhang, X. B.; Cheng, J. P.; Wang, Y. W.; Liu, F.; Luo, Z. Q. Synthesis of novel multi-branched carbon nanotubes with alkali-element modified Cu/MgO catalyst. Chem. Phys. Lett. 2005, 409, 89–92.
Lee, S. Y.; Yamada, M.; Miyake, M. Synthesis of carbon nanotubes over gold nanoparticle supported catalysts. Carbon 2005, 43, 2654–2663.
Li, P.; Zhang, X.; Liu, J. Aligned single-walled carbon nanotube arrays from rhodium catalysts with unexpected diameter uniformity independent of the catalyst size and growth temperature. Chem. Mater. 2016, 28, 870–875.
Ritschel, M.; Leonhardt, A.; Elefant, D.; Oswald, S.; Büchner, B. Rhenium-catalyzed growth carbon nanotubes. J. Phys. Chem. C. 2007, 111, 8414–8417.
Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309.
Yang, D. H.; Li, L. H.; Wei, X. J.; Wang, Y. C.; Zhou, W. Y.; Kataura, H.; Xie, S. S.; Liu, H. P. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system. Sci. Adv. 2021, 7, eabe0084.
Cao, K. C.; Zoberbier, T.; Biskupek, J.; Botos, A.; McSweeney, R. L.; Kurtoglu, A.; Stoppiello, C. T.; Markevich, A. V.; Besley, E.; Chamberlain, T. W. et al. Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts. Nat. Commun. 2018, 9, 3382.
Olsthoorn, A. A.; Boelhouwer, C. An infrared spectroscopic study of the Re2O7/Al2O3 metathesis catalyst: I. Physicochemical properties, structure, and synthesis. J. Catal. 1976, 44, 197–206.
Hardcastle, F. D.; Wachs, I. E.; Horsley, J. A.; Via, G. H. The structure of surface rhenium oxide on alumina from laser Raman spectroscopy and X-ray absorption near-edge spectroscopy. J. Mol. Catal. 1988, 46, 15–36.
Greiner, M. T.; Rocha, T. C. R.; Johnson, B.; Klyushin, A.; Knop-Gericke, A.; Schlögl, R. The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: An in-situ XPS study. Z. Phys. Chem. 2014, 228, 521–541.
Tian, Y.; Jiang, H.; von Pfaler, J.; Zhu, Z.; Nasibulin, A. G.; Nikitin, T.; Aitchison, B.; Khriachtchev, L.; Brown, D. P.; Kauppinen, E. I. Analysis of the size distribution of single-walled carbon nanotubes using optical absorption spectroscopy. J. Phys. Chem. Lett. 2010, 1, 1143–1148.
Li, H.; Gordeev, G.; Garrity, O.; Peyyety, N. A.; Selvasundaram, P. B.; Dehm, S.; Krupke, R.; Cambré, S.; Wenseleers, W.; Reich, S. et al. Separation of specific single-enantiomer single-wall carbon nanotubes in the large-diameter regime. ACS Nano 2020, 14, 948–963.
Zhang, S. C.; Lin, D. W.; Liu, W. M.; Yu, Y.; Zhang, J. Growth of single-walled carbon nanotubes with different chirality on same solid cobalt catalysts at low temperature. Small 2019, 15, 1903896.
Artyukhov, V. I.; Penev, E. S.; Yakobson, B. I. Why nanotubes grow chiral. Nat. Commun. 2014, 5, 4892.
Zhang, S. C.; Wang, X.; Yao, F. R.; He, M. S.; Lin, D. W.; Ma, H.; Sun, Y. Y.; Zhao, Q. C.; Liu, K. H.; Ding, F. et al. Controllable growth of (n, n − 1) family of semiconducting carbon nanotubes. Chem 2019, 5, 1182–1193.
Liao, Y. P.; Jiang, H.; Wei, N.; Laiho, P.; Zhang, Q.; Khan, S. A.; Kauppinen, E. I. Direct synthesis of colorful single-walled carbon nanotube thin films. J. Am. Chem. Soc. 2018, 140, 9797–9800.
Zhu, Z.; Jiang, H.; Susi, T.; Nasibulin, A. G.; Kauppinen, E. I. The use of NH3 to promote the production of large-diameter single-walled carbon nanotubes with a narrow (n, m) distribution. J. Am. Chem. Soc. 2011, 133, 1224–1227.
He, M. S.; Magnin, Y.; Amara, H.; Jiang, H.; Cui, H. Z.; Fossard, F.; Castan, A.; Kauppinen, E.; Loiseau, A.; Bichara, C. Linking growth mode to lengths of single-walled carbon nanotubes. Carbon 2017, 113, 231–236.
He, M. S.; Magnin, Y.; Jiang, H.; Amara, H.; Kauppinen, E. I.; Loiseau, A.; Bichara, C. Growth modes and chiral selectivity of single-walled carbon nanotubes. Nanoscale 2018, 10, 6744–6750.
Chen, Z. H.; Appenzeller, J.; Knoch, J.; Lin, Y. M.; Avouris, P. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 2005, 5, 1497–1502.
Tune, D. D.; Flavel, B. S. Advances in carbon nanotube–silicon heterojunction solar cells. Adv. Energy Mater. 2018, 8, 1703241.
Schießl, S. P.; Fröhlich, N.; Held, M.; Gannott, F.; Schweiger, M.; Forster, M.; Scherf, U.; Zaumseil, J. Polymer-sorted semiconducting carbon nanotube networks for high-performance ambipolar field-effect transistors. ACS Appl. Mater. Interfaces 2015, 7, 682–689.
Tunuguntla, R. H.; Allen, F. I.; Kim, K.; Belliveau, A.; Noy, A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat. Nanotechnol. 2016, 11, 639–644.
Zeng, X.; Yang, D. H.; Liu, H. P.; Zhou, N. G.; Wang, Y. C.; Zhou, W. Y.; Xie, S. S.; Kataura, H. Detecting and tuning the interactions between surfactants and carbon nanotubes for their high-efficiency structure separation. Adv. Mater. Interfaces 2018, 5, 1700727.
Hároz, E. H.; Duque, J. G.; Lu, B. Y.; Nikolaev, P.; Arepalli, S.; Hauge, R. H.; Doorn, S. K.; Kono, J. Unique origin of colors of armchair carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 4461–4464.
Wei, N.; Tian, Y.; Liao, Y. P.; Komatsu, N.; Gao, W. L.; Lyuleeva-Husemann, A.; Zhang, Q.; Hussain, A.; Ding, E. X.; Yao, F. R. et al. Carbon nanotubes: Colors of single-wall carbon nanotubes (Adv. Mater. 8/2021). Adv. Mater. 2021, 33, 2006395.
Wu, Q. R.; Zhang, H.; Ma, C.; Li, D.; Xin, L. T.; Zhang, X. T.; Zhao, N.; He, M. S. SiO2-promoted growth of single-walled carbon nanotubes on an alumina supported catalyst. Carbon 2021, 176, 367–373.
Wu, Q. R.; Qiu, L.; Zhang, L. L.; Liu, H. P.; Ma, R. X.; Xie, P.; Liu, R. L.; Hou, P. X.; Ding, F.; Liu, C. et al. Temperature-dependent selective nucleation of single-walled carbon nanotubes from stabilized catalyst nanoparticles. Chem. Eng. J. 2022, 431, 133487.