AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Alkali ion-promoted palladium subnanoclusters stabilized on porous alumina nanosheets with enhanced catalytic activity for benzene oxidation

Zhijun Li1( )Minghui Di1Wei Wei1Leipeng Leng1Zhijun Li2( )Cheng He3Qiang Tan3Qian Xu4( )J. Hugh Horton1,5( )Li Li6Junfa Zhu4
Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Department of Chemistry, Queen’s University, Kingston K7L 3N6, Canada
College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
Show Author Information

Graphical Abstract

Herein, we report on alkali ion-promoted Pd subnanoclusters supported over defective γ-Al2O3 nanosheets. This catalyst presents exceptional catalytic efficacy for benzene oxidation and excellent anti-sintering ability. Density functional theory calculations reveal that the addition of alkali ion can significantly impact the catalyst’s structure and electronic properties, and ultimately promote its activity and stability.

Abstract

Catalytic C−H bond activation is one of the backbones of the chemical industry. Supported metal subnanoclusters consisting of a few atoms have shown attractive properties for heterogeneous catalysis. However, the creation of such catalyst systems with high activity and excellent anti-sintering ability remains a grand challenge. Here, we report on alkali ion-promoted Pd subnanoclusters supported over defective γ-Al2O3 nanosheets, which display exceptional catalytic activity for C−H bond activation in the benzene oxidation reaction. The presence of Pd subnanoclusters is verified by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. This catalyst shows excellent catalytic activity, with a turnover frequency of 280 h−1 and yield of 98%, in benzene oxidation reaction to give phenol under mild conditions. Moreover, the introduction of alkali ion greatly retards the diffusion and migration of metal atoms when tested under high-temperature sintering conditions. Density functional theory (DFT) calculations reveal that the addition of alkali ion to Pd nanoclusters can significantly impact the catalyst’s structure and electronic properties, and eventually promote its activity and stability. This work sheds light on the facile and scalable synthesis of highly active and stable catalyst systems with alkali additives for industrially important reactions.

Electronic Supplementary Material

Download File(s)
12274_2022_4250_MOESM1_ESM.pdf (2.8 MB)

References

1

Xu, Z.; Xiao, F.-S.; Purnell, S. K.; Alexeev, O.; Kawi, S.; Deutsch, S. E.; Gates, B. C. Size-dependent catalytic activity of supported metal clusters. Nature 1994, 372, 346–348.

2

Gates, B. C. Supported metal clusters: Synthesis, structure, and catalysis. Chem. Rev. 1995, 95, 511–522.

3

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

4

ElMetwally, A. E.; Eshaq, G.; Yehia, F. Z.; Al-Sabagh, A. M.; Kegnæs, S. Iron oxychloride as an efficient catalyst for selective hydroxylation of benzene to phenol. ACS Catal. 2018, 8, 10668–10675.

5

Galvanin, F.; Sankar, M.; Cattaneo, S.; Bethell, D.; Dua, V.; Hutchings, G. J.; Gavriilidis, A. On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. Chem. Eng. J. 2018, 342, 196–210.

6

Zhang, T.; Zhang, D.; Han, X. H.; Dong, T.; Guo, X. W.; Song, C. S.; Si, R.; Liu, W.; Liu, Y. F.; Zhao, Z. K. Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu-N3 sites for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 2018, 140, 16936–16940.

7

Pan, Y.; Chen, Y. J.; Wu, K. L.; Chen, Z.; Liu, S. J.; Cao, X.; Cheong, W.-C.; Meng, T.; Luo, J.; Zheng, L. R. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 2019, 10, 4290.

8

Zhu, Y. Q.; Sun, W. M.; Luo, J.; Chen, W. X.; Cao, T.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Zhang, M. L.; Han, Y. H. et al. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat. Commun. 2018, 9, 3861.

9

Zhou, H.; Zhao, Y. F.; Gan, J.; Xu, J.; Wang, Y.; Lv, H. W.; Fang, S.; Wang, Z. Y.; Deng, Z. L.; Wang, X. Q. et al. Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene. J. Am. Chem. Soc. 2020, 142, 12643–12650.

10

Deng, D. H.; Chen, X. Q.; Yu, L.; Wu, X.; Liu, Q. F.; Liu, Y.; Yang, H. X.; Tian, H. F.; Hu, Y. F.; Du, P. P. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 2015, 1, 1500462.

11

Li, Z. J.; Li, H. H.; Yuan, D. D.; Leng, L. P.; Zhang, M. Y.; Di, M. H.; Horton, J. H.; Wang, J.; Sun, L. T.; Sun, W. W. Photoinduction of palladium single atoms supported on defect-containing γ-AlOOH nanoleaf for efficient trans-stilbene epoxidation. Chem. Eng. J. 2022, 429, 132149.

12

Liu, D. Q.; Barbar, A.; Najam, T.; Javed, M. S.; Shen, J.; Tsiakaras, P.; Cai, X. K. Single noble metal atoms doped 2D materials for catalysis. Appl. Catal. B: Environ. 2021, 297, 120389.

13

Li, Z. J.; Wang, D. H.; Wu, Y. E.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl. Sci. Rev. 2018, 5, 673–689.

14

Peng, B. S.; Liu, H. T.; Liu, Z. Y.; Duan, X. F.; Huang, Y. Toward rational design of single-atom catalysts. J. Phys. Chem. Lett. 2021, 12, 2837–2847.

15

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

16

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

17

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

18

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

19

Kaiser, S. K.; Chen, Z. P.; Faust Akl, D.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

20

Li, Z. J.; Lu, X. W.; Sun, W. W.; Leng, L. P.; Zhang, M. Y.; Li, H. H.; Bai, L.; Yuan, D. D.; Horton, J. H.; Xu, Q. et al. One-step synthesis of single palladium atoms in WO2.72 with high efficiency in chemoselective hydrodeoxygenation of vanillin. Appl. Catal. B: Environ. 2021, 298, 120535.

21

Singh, B.; Sharma, V.; Gaikwad, R. P.; Fornasiero, P.; Zboril, R.; Gawande, M. B. Single-atom catalysts: A sustainable pathway for the advanced catalytic applications. Small 2021, 17, 2006473.

22

Zhao, Y. F.; Jiang, W. J.; Zhang, J. Q.; Lovell, E. C.; Amal, R.; Han, Z. J.; Lu, X. Y. Anchoring sites engineering in single-atom catalysts for highly efficient electrochemical energy conversion reactions. Adv. Mater. 2021, 33, 2102801.

23

Zheng, W. Z.; Yang, J.; Chen, H. Q.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z. J. et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 2019, 30, 1907658.

24

Xi, J. B.; Jung, H. S.; Xu, Y.; Xiao, F.; Bae, J. W.; Wang, S. Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2008318.

25

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

26

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

27
Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. in press, https://doi.org/10.1016/j.apmate.2021.10.004.
28
Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X.-Z. et al. P-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. in press, https://doi.org/10.1002/ange.202115735.
29

Guo, W. X.; Wang, Z. Y.; Wang, X. Q.; Wu, Y. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 2021, 33, 2004287.

30

Jeong, H.; Lee, G.; Kim, B.-S.; Bae, J.; Han, J. W.; Lee, H. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 2018, 140, 9558–9565.

31

Gu, H. Y.; Liu, X.; Liu, X. F.; Ling, C. C.; Wei, K.; Zhan, G. M.; Guo, Y. B.; Zhang, L. Z. Adjacent single-atom irons boosting molecular oxygen activation on MnO2. Nat. Commun. 2021, 12, 5422.

32

Peng, M.; Dong, C. Y.; Gao, R.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed cluster catalyst (FECC): Toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 2021, 7, 262–273.

33

Zhang, M. L.; Wang, Y. G.; Chen, W.-X.; Dong, J. C.; Zheng, L. R.; Luo, J.; Wan, J. W.; Tian, S. B.; Cheong, W. C.; Wang, D. S. et al. Metal (hydr)oxides@polymer core–shell strategy to metal single-atom materials. J. Am. Chem. Soc. 2017, 139, 10976–10979.

34

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

35

Corma, A.; Concepción, P.; Boronat, M.; Sabater, M. J.; Navas, J.; Yacaman, M. J.; Larios, E.; Posadas, A.; López-Quintela, M. A.; Buceta, D. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 2013, 5, 775–781.

36

Qin, R. X.; Zhou, L. Y.; Liu, P. X.; Gong, Y.; Liu, K. L.; Xu, C. F.; Zhao, Y.; Gu, L.; Fu, G.; Zheng, N. F. Alkali ions secure hydrides for catalytic hydrogenation. Nat. Catal. 2020, 3, 703–709.

37

Vajda, S.; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 2009, 8, 213–216.

38

Hansen, T. W.; Delariva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: Particle migration or ostwald ripening? Acc. Chem. Res. 2013, 46, 1720–1730.

39

Dai, Y. Q.; Lu, P.; Cao, Z. M.; Campbell, C. T.; Xia, Y. N. The physical chemistry and materials science behind sinter-resistant catalysts. Chem. Soc. Rev. 2018, 47, 4314–4331.

40

Yin, P.; Luo, X.; Ma, Y. F.; Chu, S.-Q.; Chen, S.; Zheng, X. S.; Lu, J. L.; Wu, X.-J.; Liang, H.-W. Sulfur stabilizing metal nanoclusters on carbon at high temperatures. Nat. Commun. 2021, 12, 3135.

41

Kwak, J. H.; Hu, J. Z.; Mei, D. H.; Yi, C. -W.; Kim, D. H.; Peden, C. H. F.; Allard, L. F.; Szanyi, J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 2009, 325, 1670–1673.

42

Peterson, E. J.; DeLaRiva, A. T.; Lin, S.; Johnson, R. S.; Guo, H.; Miller, J. T.; Kwak, J. H.; Peden, C. H. F.; Kiefer, B.; Allard, L. F. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 2014, 5, 4885.

43

Digne, M.; Raybaud, P.; Sautet, P.; Guillaume, D.; Toulhoat, H. Quantum chemical and vibrational investigation of sodium exchanged γ-alumina surfaces. Phys. Chem. Chem. Phys. 2007, 9, 2577–2582.

44

Jeong, H.; Kwon, O.; Kim, B.-S.; Bae, J.; Shin, S.; Kim, H.-E.; Kim, J.; Lee, H. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 2020, 3, 368–375.

45

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

46

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

47

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

48

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

49

Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223–16233.

50

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

51

Mei, D. H.; Kwak, J. H.; Hu, J. Z.; Cho, S. J.; Szanyi, J.; Allard, L. F.; Peden, C. H. F. Unique role of anchoring penta-coordinated Al3+ sites in the sintering of γ-Al2O3-supported Pt catalysts. J. Phys. Chem. Lett. 2010, 1, 2688–2691.

52

Tang, N. F.; Cong, Y.; Shang, Q. H.; Wu, C. T.; Xu, G. L.; Wang, X. D. Coordinatively unsaturated Al3+ sites anchored subnanometric ruthenium catalyst for hydrogenation of aromatics. ACS Catal. 2017, 7, 5987–5991.

53

Kim, H. J.; Kearney, K. L.; Le, L. H.; Pekarek, R. T.; Rose, M. J. Platinum-enhanced electron transfer and surface passivation through ultrathin film aluminum oxide (Al2O3) on Si(111)-CH3 photoelectrodes. ACS Appl. Mater. Interfaces 2015, 7, 8572–8584.

54

Zeng, Y. Y.; Wang, B. W.; Li, Y.; Yan, X. L.; Chen, L. G.; Wang, Y. Ba-doped Pd/Al2O3 for continuous synthesis of diphenylamine via dehydrogenative aromatization. Ind. Eng. Chem. Res. 2020, 59, 1436–1445.

55

Chen, D.; Qu, Z. P.; Sun, Y. H.; Wang, Y. Adsorption–desorption behavior of gaseous formaldehyde on different porous Al2O3 materials. Colloids Surf. A 2014, 441, 433–440.

56

Xiang, N.; Han, X. J.; Bai, Y. R.; Li, Q. Y.; Zheng, J. F.; Li, Y. L.; Hou, Y. Q.; Huang, Z. G. Size effect of γ-Al2O3 supports on the catalytic performance of Pd/γ-Al2O3 catalysts for HCHO oxidation. Mol. Catal. 2020, 494, 111112.

Nano Research
Pages 5912-5921
Cite this article:
Li Z, Di M, Wei W, et al. Alkali ion-promoted palladium subnanoclusters stabilized on porous alumina nanosheets with enhanced catalytic activity for benzene oxidation. Nano Research, 2022, 15(7): 5912-5921. https://doi.org/10.1007/s12274-022-4250-5
Topics:

1013

Views

15

Crossref

19

Web of Science

15

Scopus

1

CSCD

Altmetrics

Received: 21 January 2022
Revised: 17 February 2022
Accepted: 17 February 2022
Published: 08 March 2022
© Tsinghua University Press 2022
Return