AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Effect of ceria surface facet on stability and reactivity of isolated platinum atoms

Bochuan Song1Shuxin Si1Asiye Soleymani1Yan Xin2Helena E. Hagelin-Weaver1( )
Department of Chemical Engineering, University of Florida, Gainesville 32611, USA
National High Magnetic Field Laboratory, Florida State University, Tallahassee 32310, USA
Show Author Information

Graphical Abstract

The stability of isolated Pt species under reducing conditions is dependent on the CeO2 surface facet exposed. The CeO2 surface facet also influences the activity of Pt/CeO2 catalysts in the CO oxidation reaction.

Abstract

Well-defined surface structures and uniformity are key factors in exploring structure–activity relationships in heterogeneous catalysts. A modified atomic layer deposition method and three well-defined CeO2 nanoshapes, octahedra with (111) surfaces, cubes exposing (100) facets, and rods with (100) and (110) surface facet terminations, were utilized to synthesize ultra-low loading Pt/CeO2 catalysts and allow investigations on the influence of ceria surface facet on isolated Pt species under reducing conditions. A mild reduction temperature (150 °C) reduces the initial platinum ions present on the surfaces of the ceria support but preserves the isolated Pt atoms on all ceria surface facets. In contrast, a reduction temperature of 350 °C, reveals very different interactions between the initial single Pt atoms and the various ceria surface facets, leading to dissimilar and non-uniform Pt ensembles on the three ceria shapes. To isolate facet dependent Pt–CeO2 interactions and avoid variations between Pt species, the Pt1/CeO2 catalysts after reduction at 150 °C were subjected to CO oxidation conditions. The isolated Pt atoms on the CeO2 octahedra and cubes are less active in the CO oxidation reaction, compared with Pt on CeO2 rods. In the case of Pt on the CeO2 octahedra this is due to strongly bound CO blocking active sites together with a stable CeO2(111) surface limiting the oxygen supply from the support. On the CeO2 cubes, some Pt is not available for reaction and CO is bound strongly on the available Pt species. In addition, the Pt catalysts supported on the CeO2 cubes are not stable with time on stream. The isolated Pt atoms on the CeO2 rods are considerably more active under these conditions and this is due to a weaker Pt–CO bond strength and more facile reverse oxygen spillover from the defect-rich (110) surfaces of the rods due to the lower energy of oxygen vacancy formation on this CeO2 surface. The Pt supported on the CeO2 rods is also remarkably stable with time on stream. This work demonstrates the importance of using ultra-low loadings of active metal and well-defined oxide supports to isolate interactions between single metal atoms and oxide supports and determine the effects of the oxide support surface facet on the active metal at the atomic level.

Electronic Supplementary Material

Download File(s)
12274_2022_4251_MOESM1_ESM.pdf (1.4 MB)

References

1

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

2

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

3

Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

4
Dumesic, J. A.; Huber, G. W.; Boudart, M. Principles of heterogeneous catalysis: Part 1. Introduction. In Handbook of Heterogeneous Catalysis. Ertl, G.; Knözinger, H.; Schüth, F.; Weitkamp, J., Eds.; Wiley-VCH: Weinheim,2008.https://doi.org/10.1002/9783527610044.hetcat0001
5

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

6

Xin, Y.; Zhang, N. N.; Lv, Y.; Wang, J.; Li, Q.; Zhang, Z. L. From nanoparticles to single atoms for Pt/CeO2: Synthetic strategies, characterizations and applications. J. Rare Earths 2020, 38, 850–862.

7

J. Jones,; H. Xiong,; A.; T. DeLaRiva,; E. J. Peterson,; H. Pham,; S. R.; Challa,; G. Qi,; S. Oh,; M. H. Wiebenga,; X. I. Pereira Hernández,; Y. Wang,; A.K. Datye, Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353 (6295), 150–154.

8

Pereira-Hernández, X. I.; DeLaRiva, A.; Muravev, V.; Kunwar, D.; Xiong, H. F.; Sudduth, B.; Engelhard, M.; Kovarik, L.; Hensen, E. J. M.; Wang, Y. et al. Tuning Pt–CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 2019, 10, 1358.

9

Xie, P. F.; Pu, T. C.; Nie, A. M.; Hwang, S.; Purdy, S. C.; Yu, W. J.; Su, D.; Miller, J. T.; Wang, C. Nanoceria-supported single-atom platinum catalysts for direct methane conversion. ACS Catal. 2018, 8, 4044–4048.

10

Pierre, D.; Deng, W. L. Flytzani-Stephanopoulos, M. The importance of strongly bound Pt-CeOx species for the water–gas shift reaction: Catalyst activity and stability evaluation. Top. Catal. 2007, 46, 363–373.

11

Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 2005, 109, 24380–24385.

12

Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987–6041.

13

Huang, W. X.; Gao, Y. X. Morphology-dependent surface chemistry and catalysis of CeO2 nanocrystals. Catal. Sci. Technol. 2014, 4, 3772–3784.

14

Bernal, S.; Calvino, J. J.; Cauqui, M. A.; Gatica, J. M.; Larese, C.; Omil, J. A. P.; Pintado, J. M. Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts. Catal. Today 1999, 50, 175–206.

15

Ta, N.; Liu, J. Y.; Shen, W. J. Tuning the shape of ceria nanomaterials for catalytic applications. Chin. J. Catal. 2013, 34, 838–850.

16

Yashima, M. Invited review: Some recent developments in the atomic-scale characterization of structural and transport properties of ceria-based catalysts and ionic conductors. Catal. Today 2015, 253, 3–19.

17

Rodriguez, J. A.; Grinter, D. C.; Liu, Z. Y.; Palomino, R. M.; Senanayake, S. D. Ceria-based model catalysts: Fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem. Soc. Rev. 2017, 46, 1824–1841.

18

Lykhach, Y.; Figueroba, A.; Camellone, M. F.; Neitzel, A.; Skála, T.; Negreiros, F. R.; Vorokhta, M.; Tsud, N.; Prince, K. C.; Fabris, S. et al. Reactivity of atomically dispersed Pt2+ species towards H2: Model Pt-CeO2 fuel cell catalyst. Phys. Chem. Chem. Phys. 2016, 18, 7672–7679.

19

Dvořák, F.; Farnesi Camellone, M.; Tovt, A.; Tran, N. D.; Negreiros, F. R.; Vorokhta, M.; Skála, T.; Matolínová, I.; Mysliveček, J.; Matolín, V. et al. Creating single-atom Pt-ceria catalysts by surface step decoration. Nat. Commun. 2016, 7, 10801.

20

Bruix, A.; Lykhach, Y.; Matolínová, I.; Neitzel, A.; Skála, T.; Tsud, N.; Vorokhta, M.; Stetsovych, V.; Ševčíková, K.; Mysliveček, J. et al. Maximum noble-metal efficiency in catalytic materials: Atomically dispersed surface platinum. Angew. Chem., Int. Ed. 2014, 53, 10525–10530.

21

Bruix, A.; Neyman, K. M.; Illas, F. Adsorption, oxidation state, and diffusion of Pt atoms on the CeO2(111) surface. J. Phys. Chem. C 2010, 114, 14202–14207.

22

Senanayake, S. D.; Rodriguez, J. A.; Stacchiola, D. Electronic metal–support interactions and the production of hydrogen through the water–gas shift reaction and ethanol steam reforming: Fundamental studies with well-defined model catalysts. Top. Catal. 2013, 56, 1488–1498.

23

Wu, Z. L.; Li, M. J.; Howe, J.; Meyer III, H. M., Overbury, S. H. Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 2010, 26, 16595–16606.

24

Maurer, F.; Jelic, J.; Wang, J. J.; Gänzler, A.; Dolcet, P.; Wöll, C.; Wang, Y. M.; Studt, F.; Casapu, M.; Grunwaldt, J. D. Tracking the formation, fate and consequence for catalytic activity of Pt single sites on CeO2. Nat. Catal. 2020, 3, 824–833.

25

Paier, J.; Penschke, C.; Sauer, J. Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment. Chem. Rev. 2013, 113, 3949–3985.

26

Zhou, Q. Y.; Zhou, C. Y.; Zhou, Y. H.; Hong, W.; Zou, S. H.; Gong, X. Q.; Liu, J. J.; Xiao, L. P.; Fan, J. More than oxygen vacancies: A collective crystal-plane effect of CeO2 in gas-phase selective oxidation of benzyl alcohol. Catal. Sci. Technol. 2019, 9, 2960–2967.

27

Gao, Y. X.; Wang, W. D.; Chang, S. J.; Huang, W. X. Morphology effect of CeO2 support in the preparation, metal–support interaction, and catalytic performance of Pt/CeO2 catalysts. ChemCatChem 2013, 5, 3610–3620.

28

Nolan, M. Enhanced oxygen vacancy formation in ceria (111) and (110) surfaces doped with divalent cations. J. Mater. Chem. 2011, 21, 9160–9168.

29

Mori, T.; Ou, D. R.; Zou, J.; Drennan, J. Present status and future prospect of design of Pt-cerium oxide electrodes for fuel cell applications. Prog. Nat. Sci. Mater. Int. 2012, 22, 561–571.

30

Palma, V.; Ruocco, C.; Cortese, M.; Renda, S.; Meloni, E.; Festa, G.; Martino, M. Platinum based catalysts in the water gas shift reaction: Recent advances. Metals 2020, 10, 866.

31

Singhania, N.; Anumol, E. A.; Ravishankar, N.; Madras, G. Influence of CeO2 morphology on the catalytic activity of CeO2-Pt hybrids for CO oxidation. Dalton Trans. 2013, 42, 15343–15354.

32

Wu, T. X.; Pan, X. Q.; Zhang, Y. B.; Miao, Z. Z.; Zhang, B.; Li, J. W.; Yang, X. G. Investigation of the redispersion of Pt nanoparticles on polyhedral ceria nanoparticles. J. Phys. Chem. Lett. 2014, 5, 2479–2483.

33

Safonova, O. V.; Guda, A. A.; Paun, C.; Smolentsev, N.; Abdala, P. M.; Smolentsev, G.; Nachtegaal, M.; Szlachetko, J.; Soldatov, M. A.; Soldatov, A. V. et al. Electronic and geometric structure of Ce3+ forming under reducing conditions in shaped ceria nanoparticles promoted by platinum. J. Phys. Chem. C 2014, 118, 1974–1982.

34

Torrente-Murciano, L.; Garcia-Garcia, F. R. Effect of nanostructured support on the WGSR activity of Pt/CeO2 catalysts. Catal. Commun. 2015, 71, 1–6.

35

Kunwar, D.; Zhou, S. L.; DeLaRiva, A.; Peterson, E. J.; Xiong, H. F.; Pereira-Hernández, X. I.; Purdy, S. C.; ter Veen, R.; Brongersma, H. H.; Miller, J. T. et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 2019, 9, 3978–3990.

36

Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

37

Tovt, A.; Bagolini, L.; Dvořák, F.; Tran, N. D.; Vorokhta, M.; Beranová, K.; Johánek, V.; Camellone, M. F.; Skála, T.; Matolínová, I. et al. Ultimate dispersion of metallic and ionic platinum on ceria. J. Mater. Chem. A 2019, 7, 13019–13028.

38

Resasco, J.; DeRita, L.; Dai, S.; Chada, J. P.; Xu, M. J.; Yan, X. X.; Finzel, J.; Hanukovich, S.; Hoffman, A. S.; Graham, G. W. et al. Uniformity is key in defining structure–function relationships for atomically dispersed metal catalysts: The case of Pt/CeO2. J. Am. Chem. Soc. 2020, 142, 169–184.

39

Zhang, S. C.; Chen, L. N.; Qi, Z. Y.; Zhuo, L.; Chen, J. L.; Pao, C. W.; Su, J.; Somorjai, G. A. Insights into the mechanism of n-hexane reforming over a single-site platinum catalyst. J. Am. Chem. Soc. 2020, 142, 16533–16537.

40

Ke, J.; Zhu, W.; Jiang, Y. Y.; Si, R.; Wang, Y. J.; Li, S. C.; Jin, C. H.; Liu, H. C.; Song, W. G.; Yan, C. H. et al. Strong local coordination structure effects on subnanometer PtOx clusters over CeO2 nanowires probed by low-temperature CO oxidation. ACS Catal. 2015, 5, 5164–5173.

41

Dutta, G.; Waghmare, U. V.; Baidya, T.; Hegde, M. S. Hydrogen spillover on CeO2/Pt: Enhanced storage of active hydrogen. Chem. Mater. 2007, 19, 6430–6436.

42

Chen, J. Y.; Wanyan, Y. J.; Zeng, J. X.; Fang, H. H.; Li, Z. J.; Dong, Y. D.; Qin, R. X.; Wu, C. Z.; Liu, D. Y.; Wang, M. Z. et al. Surface engineering protocol to obtain an atomically dispersed Pt/CeO2 catalyst with high activity and stability for CO oxidation. ACS Sustainable Chem. Eng. 2018, 6, 14054–14062.

43

Wang, H.; Liu, J. X.; Allard, L. F.; Lee, S.; Liu, J. L.; Li, H.; Wang, J. Q.; Wang, J.; Oh, S. H.; Li, W. et al. Surpassing the single-atom catalytic activity limit through paired Pt–O–Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 2019, 10, 3808.

44

Ye, X. X.; Wang, H. W.; Lin, Y.; Liu, X. Y.; Cao, L. N.; Gu, J.; Lu, J. L. Insight of the stability and activity of platinum single atoms on ceria. Nano Res. 2019, 12, 1401–1409.

45

Bruix, A.; Migani, A.; Vayssilov, G. N.; Neyman, K. M.; Libuda, J.; Illas, F. Effects of deposited Pt particles on the reducibility of CeO2(111). Phys. Chem. Chem. Phys. 2011, 13, 11384–11392.

46

Feng, H.; Libera, J. A.; Stair, P. C.; Miller, J. T.; Elam, J. W. Subnanometer palladium particles synthesized by atomic layer deposition. ACS Catal. 2011, 1, 665–673.

47

Jones, A. S.; Aziz, D.; Ilsemann, J.; Bäumer, M.; Hagelin-Weaver, H. Effects of low molar concentrations of low-valence dopants on samarium oxide xerogels in the oxidative coupling of methane. Catal. Today 2021, 365, 58–70.

48

Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.

49

Wang, C. D.; Hu, L. H.; Poeppelmeier, K.; Stair, P. C.; Marks, L. Nucleation and growth process of atomic layer deposition platinum nanoparticles on strontium titanate nanocuboids. Nanotechnology 2017, 28, 185704.

50

Wang, H.; Lu, J. L.; Marshall, C. L.; Elam, J. W.; Miller, J. T.; Liu, H. B.; Enterkin, J. A.; Kennedy, R. M.; Stair, P. C.; Poeppelmeier, K. R. et al. In situ XANES study of methanol decomposition and partial oxidation to syn-gas over supported Pt catalyst on SrTiO3 nanocubes. Catal. Today 2014, 237, 71–79.

51

Wang, C. L.; Gu, X. K.; Yan, H.; Lin, Y.; Li, J. J.; Liu, D. D.; Li, W. X.; Lu, J. L. Water-mediated mars-van krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. Acs Catal. 2017, 7, 887–891.

52

DeRita, L.; Dai, S.; Lopez-Zepeda, K.; Pham, N.; Graham, G. W.; Pan, X. Q.; Christopher, P. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 2017, 139, 14150–14165.

53

Wang, C. D.; Hu, L. H.; Lin, Y. Y.; Poeppelmeier, K.; Stair, P.; Marks, L. Controllable ALD synthesis of platinum nanoparticles by tuning different synthesis parameters. J. Phys. D Appl. Phys. 2017, 50, 415301.

54

Lu, J. L.; Elam, J. W.; Stair, P. C. Atomic layer deposition—Sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surf. Sci. Rep. 2016, 71, 410–472.

55

Stair, P. C. Synthesis of supported catalysts by atomic layer deposition. Top. Catal. 2012, 55, 93–98.

56

Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1, 3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484–10487.

57

Lu, J. L.; Elam, J. W.; Stair, P. C. Synthesis and stabilization of supported metal catalysts by atomic layer deposition. Acc. Chem. Res. 2013, 46, 1806–1815.

58

Nolan, M.; Parker, S. C.; Watson, G. W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf. Sci. 2005, 595, 223–232.

59

Lin, Y. Y.; Wu, Z. L.; Wen, J. G.; Poeppelmeier, K. R.; Marks, L. D. Imaging the atomic surface structures of CeO2 nanoparticles. Nano Lett. 2014, 14, 191–196.

60

Song, B. C.; Choi, D.; Xin, Y.; Bowers, C. R.; Hagelin-Weaver, H. Ultra-low loading Pt/CeO2 catalysts: Ceria facet effect affords improved pairwise selectivity for parahydrogen enhanced NMR spectroscopy. Angew. Chem., Int. Ed. 2021, 60, 4038–4042.

61

Aleksandrov, H. A.; Neyman, K. M.; Vayssilov, G. N. The structure and stability of reduced and oxidized mononuclear platinum species on nanostructured ceria from density functional modeling. Phys. Chem. Chem. Phys. 2015, 17, 14551–14560.

62

Gatla, S.; Aubert, D.; Agostini, G.; Mathon, O.; Pascarelli, S.; Lunkenbein, T.; Willinger, M. G.; Kaper, H. Room-temperature CO oxidation catalyst: Low-temperature metal–support interaction between platinum nanoparticles and nanosized ceria. ACS Catal. 2016, 6, 6151–6155.

63

Daelman, N.; Capdevila-Cortada, M.; López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 2019, 18, 1215–1221.

64

Gao, Y. X.; Li, R. T.; Chen, S. L.; Luo, L. F.; Cao, T.; Huang, W. X. Morphology-dependent interplay of reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO2 nanocrystals. Phys. Chem. Chem. Phys. 2015, 17, 31862–31871.

65

Huang, W. X. Oxide nanocrystal model catalysts. Acc. Chem. Res. 2016, 49, 520–527.

66

Van Every, K. W.; Griffiths, P. R. Characterization of diffuse reflectance FT-IR spectrometry for heterogeneous catalyst studies. Appl. Spectrosc. 1991, 45, 347–359.

67

DeRita, L.; Resasco, J.; Dai, S.; Boubnov, A.; Thang, H. V.; Hoffman, A. S.; Ro, I.; Graham, G. W.; Bare, S. R.; Pacchioni, G. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 2019, 18, 746–751.

68

Aleksandrov, H. A.; Neyman, K. M.; Hadjiivanov, K. I.; Vayssilov, G. N. Can the state of platinum species be unambiguously determined by the stretching frequency of an adsorbed CO probe molecule? Phys. Chem. Chem. Phys. 2016, 18, 22108–22121.

69

Bazin, P.; Saur, O.; Lavalley, J. C.; Daturi, M.; Blanchard, G. FT-IR study of CO adsorption on Pt/CeO2: Characterisation and structural rearrangement of small Pt particles. Phys. Chem. Chem. Phys. 2005, 7, 187–194.

70

Li, J.; Tang, Y.; Ma, Y. Y.; Zhang, Z. Y.; Tao, F.; Qu, Y. Q. In situ formation of isolated bimetallic PtCe sites of single-dispersed Pt on CeO2 for low-temperature CO oxidation. ACS Appl. Mater. Interfaces 2018, 10, 38134–38140.

71

Ding, K. L.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water–gas shift over supported Pt catalysts. Science 2015, 350, 189–192.

72

Peng, R. S.; Sun, X. B.; Li, S. J.; Chen, L. M.; Fu, M. L.; Wu, J. L.; Ye, D. Q. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene. Chem. Eng. J. 2016, 306, 1234–1246.

73

Zhang, D. F.; Zhang, C. S.; Chen, Y. M.; Wang, Q. F.; Bian, L. Y.; Miao, J. Support shape effect on the catalytic performance of Pt/CeO2 nanostructures for methanol electrooxidation. Electrochim. Acta 2014, 139, 42–47.

74

Tong, T.; Liu, X. H.; Guo, Y.; Banis, M. N.; Hu, Y. F.; Wang, Y. Q. The critical role of CeO2 crystal-plane in controlling Pt chemical states on the hydrogenolysis of furfuryl alcohol to 1,2-pentanediol. J. Catal. 2018, 365, 420–428.

75

Wang, W. H.; Zhu, M. D.; Lu, X. L.; Gao, Y. F.; Li, L. J.; Cao, Z. Z.; Li, C. H.; Liu, J. R.; Zheng, H. T. Enhanced catalytic performance of a Pt-xCeO2/graphene catalyst for DMFCs by adjusting the crystal-plane and shape of nanoscale ceria. Rsc Adv. 2015, 5, 74899–74906.

76

Avanesian, T.; Dai, S.; Kale, M. J.; Graham, G. W.; Pan, X. Q.; Christopher, P. Quantitative and atomic-scale view of CO-induced Pt nanoparticle surface reconstruction at saturation coverage via DFT calculations coupled with in situ TEM and IR. J. Am. Chem. Soc. 2017, 139, 4551–4558.

77

Zhao, E. W.; Zheng, H. B.; Zhou, R. H.; Hagelin-Weaver, H. E.; Bowers, C. R. Shaped ceria nanocrystals catalyze efficient and selective para-hydrogen-enhanced polarization. Angew. Chem., Int. Ed. 2015, 54, 14270–14275.

Nano Research
Pages 5922-5932
Cite this article:
Song B, Si S, Soleymani A, et al. Effect of ceria surface facet on stability and reactivity of isolated platinum atoms. Nano Research, 2022, 15(7): 5922-5932. https://doi.org/10.1007/s12274-022-4251-4
Topics:

891

Views

21

Crossref

17

Web of Science

18

Scopus

1

CSCD

Altmetrics

Received: 12 September 2021
Revised: 08 February 2022
Accepted: 18 February 2022
Published: 05 May 2022
© Tsinghua University Press 2022
Return