Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Boosting acidic water oxidation performance by constructing arrays-like nanoporous IrxRu1−xO2 with abundant atomic steps

Junjie Li1,2,§Zan Lian3,§Qiang Li4Zhongchang Wang2Lifeng Liu2Francis Leonard Deepak2Yanping Liu5Bo Li3()Junyuan Xu6()Zuxin Chen2,7()
CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, Changsha 410083, China
Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Institute of Semiconductors, South China Normal University, Guangzhou 510631, China

§ Junjie Li and Zan Lian contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
High performance IrxRu1–xO2 oxygen evolution reaction (OER) catalysts with abundant atomic steps have been fabricated by an alloy-spinning electrochemical activation route.

Abstract

The fabrication of electrocatalysts with high activity and acid stability for acidic oxygen evolution reaction (OER) is an urgent need, yet extremely challenging. Here, we report the design and successful fabrication of a high performance self-supported cogwheel arrays-like nanoporous IrxRu1−xO2 catalyst with abundant atomic steps for acidic OER using a facile alloy-spinning-electrochemical activation method that allows large-scale fabrication. The obtained IrxRu1−xO2 catalysts merely need overpotentials of 211 and 295 mV to deliver catalytic current densities of 10 and 300 mA·cm−2 in 0.5 M H2SO4, respectively, and can sustain constant OER electrolysis for at least 140 h at a high current density of 300 mA·cm−2. Further density functional theory (DFT) calculations uncover that such high intrinsic activities mainly originate from the largely exposed high-index atomic step planes, which markedly lower the limiting potential of the rate-determining step (RDS) of OER. These findings provide an insight into the exploration of high performance electrocatalysts, and open up an avenue for further developing the state-of-the-art Ir and/or Ru-based catalysts for large-scale practical applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4253_MOESM1_ESM.pdf (1.1 MB)

References

1

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

2

Park, S.; Shao, Y. Y.; Liu, J.; Wang, Y. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: Status and perspective. Energy Environ. Sci. 2012, 5, 9331–9344.

3

Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57–69.

4

Vojvodic, A.; Nørskov, J. K. Optimizing perovskites for the water-splitting reaction. Science 2011, 334, 1355–1356.

5

Xu, J. Y.; Aili, D.; Li, Q. F.; Christensen, E.; Jensen, J. O.; Zhang, W.; Hansen, M. K.; Liu, G. Y.; Wang, X. D. Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis. Energy Environ. Sci. 2014, 7, 820–830.

6

Sapountzi, F. M.; Gracia, J. M.; Weststrate, C. J.; Fredriksson, H. O. A.; Niemantsverdriet, J. W. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog. Energy Combust. Sci. 2017, 58, 1–35.

7

Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

8

Spöri, C.; Kwan, J. T. H.; Bonakdarpour, A.; Wilkinson, D. P.; Strasser, P. The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem., Int. Ed. 2017, 56, 5994–6021.

9

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

10

Xu, J. Y.; Li, J. J.; Xiong, D. H.; Zhang, B. S.; Liu, Y. F.; Wu, K. H.; Amorim, I.; Li, W.; Liu, L. F. Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide pre-catalysts. Chem. Sci. 2018, 9, 3470–3476.

11

Trasatti, S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim. Acta 1984, 29, 1503–1512.

12

Lin, Y. C.; Tian, Z. Q.; Zhang, L. J.; Ma, J. Y.; Jiang, Z.; Deibert, B. J.; Ge, R. X.; Chen, L. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10, 162.

13

Chen, S.; Huang, H.; Jiang, P.; Yang, K.; Diao, J. F.; Gong, S. P.; Liu, S.; Huang, M. X.; Wang, H.; Chen, Q. W. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal. 2020, 10, 1152–1160.

14

Shi, Q. R.; Zhu, C. Z.; Zhong, H.; Su, D.; Li, N.; Engelhard, M. H.; Xia, H. B.; Zhang, Q.; Feng, S.; Beckman, S. P. et al. Nanovoid incorporated IrxCu metallic aerogels for oxygen evolution reaction catalysis. ACS Energy Lett. 2018, 3, 2038–2044.

15

Guo, H. Y.; Fang, Z. W.; Li, H.; Fernandez, D.; Henkelman, G.; Humphrey, S. M.; Yu, G. H. Rational design of rhodium-iridium alloy nanoparticles as highly active catalysts for acidic oxygen evolution. ACS Nano 2019, 13, 13225–13234.

16

Cui, X. J.; Ren, P. J.; Ma, C.; Zhao, J.; Chen, R. X.; Chen, S. M.; Rajan, N. P.; Li, H. B.; Yu, L.; Tian, Z. Q. et al. Robust interface Ru centers for high-performance acidic oxygen evolution. Adv. Mater. 2020, 32, 1908126.

17

Park, J.; Sa, Y. J.; Baik, H.; Kwon, T.; Joo, S. H.; Lee, K. Iridium-based multimetallic nanoframe@nanoframe structure: An efficient and robust electrocatalyst toward oxygen evolution reaction. ACS Nano 2017, 11, 5500–5509.

18

Jiang, B.; Guo, Y. N.; Kim, J.; Whitten, A. E.; Wood, K.; Kani, K.; Rowan, A. E.; Henzie, J.; Yamauchi, Y. Mesoporous metallic iridium nanosheets. J. Am. Chem. Soc. 2018, 140, 12434–12441.

19

Kim, J.; Shih, P. C.; Qin, Y.; Al-Bardan, Z.; Sun, C. J.; Yang, H. A porous pyrochlore Y2[Ru1.6Y0.4]O7−δ electrocatalyst for enhanced performance towards the oxygen evolution reaction in acidic media. Angew. Chem., Int. Ed. 2018, 57, 13877–13881.

20

Zhuang, Z. W.; Wang, Y.; Xu, C. Q.; Liu, S. J.; Chen, C.; Peng, Q.; Zhuang, Z. B.; Xiao, H.; Pan, Y.; Lu, S. Q. et al. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat. Commun. 2019, 10, 4875.

21

Shi, H.; Zhou, Y. T.; Yao, R. Q.; Wan, W. B.; Zhang, Q. H.; Gu, L.; Wen, Z.; Lang, X. Y.; Jiang, Q. Intermetallic Cu5Zr clusters anchored on hierarchical nanoporous copper as efficient catalysts for hydrogen evolution reaction. Research 2020, 2020, 2987234.

22

Shi, H.; Zhou, Y. T.; Yao, R. Q.; Wan, W. B.; Ge, X.; Zhang, W.; Wen, Z.; Lang, X. Y.; Zheng, W. T.; Jiang, Q. Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting. Nat. Commun. 2020, 11, 2940.

23

Fujita, T.; Guan, P. F.; Mckenna, K.; Lang, X. Y.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N. et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 2012, 11, 775–780.

24

Lang, X. Y.; Han, G. F.; Xiao, B. B.; Gu, L.; Yang, Z. Z.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Jiang, Q. Mesostructured intermetallic compounds of platinum and non-transition metals for enhanced electrocatalysis of oxygen reduction reaction. Adv. Funct. Mater. 2015, 25, 230–237.

25

Li, Q.; Wei, B.; Li, Y.; Xu, J. Y.; Li, J. J.; Liu, L. F.; Deepak, F. L. Large-scale fabrication of hollow Pt3Al nanoboxes and their electrocatalytic performance for hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 9842–9847.

26

Li, Q.; Li, J. J.; Xu, J. Y.; Zhang, N.; Li, Y. P.; Liu, L. F.; Pan, D.; Wang, Z. C.; Deepak, F. L. Ultrafine-grained porous Ir-based catalysts for high-performance overall water splitting in acidic media. ACS Appl. Energy Mater. 2020, 3, 3736–3744.

27

Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

28

Zhang, R. H.; Dubouis, N.; Ben Osman, M.; Yin, W.; Sougrati, M. T.; Corte, D. A. D.; Giaume, D.; Grimaud, A. A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media. Angew. Chem., Int. Ed. 2019, 58, 4571–4575.

29

Xu, J. Y.; Lian, Z.; Wei, B.; Li, Y.; Bondarchuk, O.; Zhang, N.; Yu, Z. P.; Araujo, A.; Amorim, I.; Wang, Z. C. Strong electronic coupling between ultrafine iridium-ruthenium nanoclusters and conductive, acid-stable tellurium nanoparticle support for efficient and durable oxygen evolution in acidic and neutral media. ACS Catal. 2020, 10, 3571–3579.

30

Xu, J. Y.; Li, J. J.; Lian, Z.; Araujo, A.; Li, Y.; Wei, B.; Yu, Z. P.; Bondarchuk, O.; Amorim, I.; Tileli, V. et al. Atomic-step enriched ruthenium-iridium nanocrystals anchored homogeneously on MOF-derived support for efficient and stable oxygen evolution in acidic and neutral media. ACS Catal. 2021, 11, 3402–3413.

31

Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

32

Sun, Y. J.; Zhang, X.; Luo, M. C.; Chen, X.; Wang, L.; Li, Y. J.; Li, M. Q.; Qin, Y. N.; Li, C. J.; Xu, N. Y. et al. Ultrathin PtPd-based nanorings with abundant step atoms enhance oxygen catalysis. Adv. Mater. 2018, 30, 1802136.

33

Zhang, N.; Li, L. G.; Wang, J.; Hu, Z. W.; Shao, Q.; Xiao, X. H.; Huang, X. Q. Surface-regulated rhodium-antimony nanorods for nitrogen fixation. Angew. Chem., Int. Ed. 2020, 59, 8066–8071.

34

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

35

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

36

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

37

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

38

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

39

Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.

40

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

41

Li, J. J.; Li, Q.; Wang, Z. C.; Deepak, F. L. Real-time dynamical observation of lattice induced nucleation and growth in interfacial solid–solid phase transitions. Cryst. Growth Des. 2016, 16, 7256–7262.

42

Li, J. J.; Chen, J. C.; Wang, H.; Chen, N.; Wang, Z. C.; Guo, L.; Deepak, F. L. In situ atomic-scale study of particle-mediated nucleation and growth in amorphous bismuth to nanocrystal phase transformation. Adv. Sci. 2018, 5, 1700992.

43

Li, J. J.; Li, Y. P.; Li, Q.; Wang, Z. C.; Deepak, F. L. Atomic-scale dynamic observation reveals temperature-dependent multistep nucleation pathways in crystallization. Nanoscale Horiz. 2019, 4, 1302–1309.

44

Ding, Y.; Chen, M. W.; Erlebacher, J. Metallic mesoporous nanocomposites for electrocatalysis. J. Am. Chem. Soc. 2004, 126, 6876–6877.

45

Wang, R. Y.; Liu, J. G.; Liu, P.; Bi, X. X.; Yan, X. L.; Wang, W. X.; Ge, X. B.; Chen, M. W.; Ding, Y. Dispersing Pt atoms onto nanoporous gold for high performance direct formic acid fuel cells. Chem. Sci. 2014, 5, 403–409.

46

Balcerzak, J.; Redzynia, W.; Tyczkowski, J. In-situ XPS analysis of oxidized and reduced plasma deposited ruthenium-based thin catalytic films. Appl. Surf. Sci. 2017, 426, 852–855.

47

Pennycook, S. J.; Jesson, D. E. High-resolution Z-contrast imaging of crystals. Ultramicroscopy 1991, 37, 14–38.

48

Ishikawa, R.; Lupini, A. R.; Findlay, S. D.; Taniguchi, T.; Pennycook, S. J. Three-dimensional location of a single dopant with atomic precision by aberration-corrected scanning transmission electron microscopy. Nano Lett. 2014, 14, 1903–1908.

49

Li, Q.; Yin, D. Q.; Li, J. J.; Deepak, F. L. Atomic-scale understanding of gold cluster growth on different substrates and adsorption-induced structural change. J. Phys. Chem. C 2018, 122, 1753–1760.

50

Zhang, J. T.; Zhang, Z.; Ji, Y. F.; Yang, J. D.; Fan, K.; Ma, X. Z.; Wang, C.; Shu, R. Y.; Chen, Y. Surface engineering induced hierarchical porous Ni12P5-Ni2P polymorphs catalyst for efficient wide pH hydrogen production. Appl. Catal. B:Environ. 2021, 282, 119609.

51

Wang, X. G.; Kolen’ko, Y. V.; Bao, X. Q.; Kovnir, K.; Liu, L. F. One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew. Chem., Int. Ed. 2015, 54, 8188–8192.

52

Martínez-Séptimo, A.; Valenzuela, M. A.; Del Angel, P.; González-Huerta, R. D. G. IrRuOx/TiO2 a stable electrocatalyst for the oxygen evolution reaction in acidic media. Int. J. Hydrogen Energy 2021, 46, 25918–25928.

53

Kundu, S.; Vidal, A. B.; Yang, F.; Ramírez, P. J.; Senanayake, S. D.; Stacchiola, D.; Evans, J.; Liu, P.; Rodriguez, J. A. Special chemical properties of RuOx nanowires in RuOx/TiO2(110): Dissociation of water and hydrogen production. J. Phys. Chem. C 2012, 116, 4767–4773.

54

Böhm, D.; Beetz, M.; Schuster, M.; Peters, K.; Hufnagel, A. G.; Döblinger, M.; Böller, B.; Bein, T. Fattakhova-Rohlfing, D. Efficient OER catalyst with low Ir volume density obtained by homogeneous deposition of iridium oxide nanoparticles on macroporous antimony-doped tin oxide support. Adv. Funct. Mater. 2020, 30, 1906670.

55

Tackett, B. M.; Sheng, W. C.; Kattel, S.; Yao, S. Y.; Yan, B. H.; Kuttiyiel, K. A.; Wu, Q. Y.; Chen, J. G. Reducing iridium loading in oxygen evolution reaction electrocatalysts using core–shell particles with nitride cores. ACS Catal. 2018, 8, 2615–2621.

56

Li, G. Q.; Li, K.; Yang, L.; Chang, J. F.; Ma, R. P.; Wu, Z. J.; Ge, J. J.; Liu, C. P.; Xing, W. Boosted performance of Ir species by employing TiN as the support toward oxygen evolution reaction. ACS Appl. Mater. Interfaces 2018, 10, 38117–38124.

57

Guan, J. Q.; Li, D.; Si, R.; Miao, S.; Zhang, F. X.; Li, C. Synthesis and demonstration of subnanometric iridium oxide as highly efficient and robust water oxidation catalyst. ACS Catal. 2017, 7, 5983–5986.

58

Miao, X. B.; Zhang, L. F.; Wu, L.; Hu, Z. P.; Shi, L.; Zhou, S. M. Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation. Nat. Commun. 2019, 10, 3809.

59

Ge, R. X.; Li, L.; Su, J. W.; Lin, Y. C.; Tian, Z. Q.; Chen, L. Ultrafine defective RuO2 electrocatayst integrated on carbon cloth for robust water oxidation in acidic media. Adv. Energy Mater. 2019, 9, 1901313.

60

Zhao, Z. L.; Wang, X.; Huang, X.; Feng, Q.; Gu, S.; Zhang, Z.; Xu, H.; Zeng, L.; Gu, M.; Li, H. Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media. Energy Environ. Sci. 2020, 13, 5143–5151.

61

Li, Y. G.; Wang, Y.; Lu, J. M.; Yang, B.; San, X. Y.; Wu, Z. S. 2D intrinsically defective RuO2/graphene heterostructures as all-pH efficient oxygen evolving electrocatalysts with unprecedented activity. Nano Energy. 2020, 78, 105185.

Nano Research
Pages 5933-5939
Cite this article:
Li J, Lian Z, Li Q, et al. Boosting acidic water oxidation performance by constructing arrays-like nanoporous IrxRu1−xO2 with abundant atomic steps. Nano Research, 2022, 15(7): 5933-5939. https://doi.org/10.1007/s12274-022-4253-2
Topics:
Metrics & Citations  
Article History
Copyright
Return