Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Multi-drug resistance (MDR) has become the largest obstacle to the success of cancer patients receiving traditional chemotherapeutics or novel targeted drugs. Here, we developed a targeted nanoplatform based on biodegradable boronic acid modified ε-polylysine to co-deliver P-gp siRNA, Bcl-2 siRNA, and doxorubicin for overcoming the challenge. The targeted nanoplatform showed a robust suppressing efficiency for the invasion, proliferation, and colony formation of adriamycin (ADR) resistant breast cancer cell line (MCF-7/ADR) cells in vitro. The ATP responsiveness of the nanoplatform was also proved in the research. In thein vivo antitumor experiment, the targeted nanoplatform showed a significant inhibition of tumor growth with good biocompatibility. The goal of this study is to develop a novel and facile strategy to prepare a highly efficient and safe gene and drug delivery system for MDR breast cancer based on biocompatible ε-polylysine polymers.
DeSantis, C.; Siegel, R.; Bandi, P.; Jemal, A. Breast cancer statistics, 2011. CA Cancer J. Clin. 2011, 61, 409–418.
Maughan, K. L.; Lutterbie, M. A.; Ham, P. S. Treatment of breast cancer. Am. Fam. Physician 2010, 81, 1339–1346.
Wang, H.; Mao, X. Evaluation of the efficacy of neoadjuvant chemotherapy for breast cancer. Drug Des. Devel. Ther. 2020, 14, 2423–2433.
Fisusi, F. A.; Akala, E. O. Drug combinations in breast cancer therapy. Pharm. Nanotechnol. 2019, 7, 3–23.
Vaidya, J. S.; Massarut, S.; Vaidya, H. J.; Alexander, E. C.; Richards, T.; Caris, J. A.; Sirohi, B.; Tobias, J. S. Rethinking neoadjuvant chemotherapy for breast cancer. BMJ 2018, 360, j5913.
Krug, D.; Loibl, S. Neoadjuvant chemotherapy for early breast cancer. Lancet Oncol. 2018, 19, e129.
Cazzaniga, M. E.; Dionisio, M. R.; Riva, F. Metronomic chemotherapy for advanced breast cancer patients. Cancer Lett. 2017, 400, 252–258.
Cazzaniga, M. E.; Pinotti, G.; Montagna, E.; Amoroso, D.; Berardi, R.; Butera, A.; Cagossi, K.; Cavanna, L.; Ciccarese, M.; Cinieri, S. et al. Metronomic chemotherapy for advanced breast cancer patients in the real world practice: Final results of the VICTOR-6 study. Breast 2019, 48, 7–16.
Yuan, Y. L.; Cai, T. G.; Xia, X.; Zhang, R. H.; Chiba, P.; Cai, Y. Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. Drug Deliv. 2016, 23, 3350–3357.
Li, Y. L.; Gao, X. N.; Yu, Z. Z.; Liu, B.; Pan, W.; Li, N.; Tang, B. Reversing multidrug resistance by multiplexed gene silencing for enhanced breast cancer chemotherapy. ACS Appl. Mater. Interfaces 2018, 10, 15461–15466.
Doyle, L. A.; Yang, W. D.; Abruzzo, L. V.; Krogmann, T.; Gao, Y. M.; Rishi, A. K.; Ross, D. D. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA 1998, 95, 15665–15670.
Chen, Z. L.; Shi, T. L.; Zhang, L.; Zhu, P. L.; Deng, M. Y.; Huang, C.; Hu, T. T.; Jiang, L.; Li, J. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016, 370, 153–164.
Shi, X. L.; Dou, Y. H.; Zhou, K. R.; Huo, J. L.; Yang, T. J.; Qin, T. T.; Liu, W. H.; Wang, S. Q.; Yang, D. X.; Chang, L. M. et al. Targeting the Bcl-2 family and P-glycoprotein reverses paclitaxel resistance in human esophageal carcinoma cell line. Biomed. Pharmacother. 2017, 90, 897–905.
Clarke, R.; Leonessa, F.; Trock, B. Multidrug resistance/P-glycoprotein and breast cancer: Review and meta-analysis. Semin. Oncol. 2005, 32, 9–15.
Risnayanti, C.; Jang, Y. S.; Lee, J. J.; Ahn, H. J. PLGA nanoparticles co-delivering MDR1 and BCL2 siRNA for overcoming resistance of paclitaxel and cisplatin in recurrent or advanced ovarian cancer. Sci. Rep. 2018, 8, 7498.
Wu, Y.; Zhang, Y.; Zhang, W.; Sun, C. L.; Wu, J. Z.; Tang, J. H. Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles. Colloids Surf. B Biointerfaces 2016, 138, 60–69.
Mello, C. C.; Conte, D. Jr. Revealing the world of RNA interference. Nature 2004, 431, 338–342.
Han, H. Y. RNA interference to knock down gene expression. Methods Mol. Biol. 2018, 1706, 293–302.
Liu, H. M.; Wang, H.; Yang, W. J.; Cheng, Y. Y. Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. J. Am. Chem. Soc. 2012, 134, 17680–17687.
Shi, Y.; Lammers, T. Combining nanomedicine and immunotherapy. Acc. Chem. Res. 2019, 52, 1543–1554.
Shen, W. W.; Wang, Q. W.; Shen, Y.; Gao, X.; Li, L.; Yan, Y.; Wang, H.; Cheng, Y. Y. Green tea catechin dramatically promotes RNAi mediated by low-molecular-weight polymers. ACS Cent. Sci. 2018, 4, 1326–1333.
Yang, J. P.; Zhang, Q.; Chang, H.; Cheng, Y. Y. Surface-engineered dendrimers in gene delivery. Chem. Rev. 2015, 115, 5274–5300.
Wang, H.; Huang, Q.; Chang, H.; Xiao, J. R.; Cheng, Y. Y. Stimuli-responsive dendrimers in drug delivery. Biomater. Sci. 2016, 4, 375–390.
Lv, J.; Fan, Q. Q.; Wang, H.; Cheng, Y. Y. Polymers for cytosolic protein delivery. Biomaterials 2019, 218, 119358.
Wang, M. M.; Liu, H. M.; Li, L.; Cheng, Y. Y. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat. Commun. 2014, 5, 3053.
Liu, H. M.; Wang, Y.; Wang, M. M.; Xiao, J. R.; Cheng, Y. Y. Fluorinated poly(propylenimine) dendrimers as gene vectors. Biomaterials 2014, 35, 5407–5413.
Shi, C.; He, Y.; Feng, X. B.; Fu, D. H. ε-Polylysine and next-generation dendrigraft poly-L-lysine: Chemistry, activity, and applications in biopharmaceuticals. J. Biomater. Sci. Polym. Ed. 2015, 26, 1343–1356.
Kim, S. W. Polylysine copolymers for gene delivery. Cold Spring Harb Protoc. 2012, 2012, 433–438.
Chen, H. C.; Tian, J. W.; Liu, D. Y.; He, W. J.; Guo, Z. J. Dual aptamer modified dendrigraft poly-L-lysine nanoparticles for overcoming multi-drug resistance through mitochondrial targeting. J. Mater. Chem. B 2017, 5, 972–979.
Kodama, Y.; Kuramoto, H.; Mieda, Y.; Muro, T.; Nakagawa, H.; Kurosaki, T.; Sakaguchi, M.; Nakamura, T.; Kitahara, T.; Sasaki, H. Application of biodegradable dendrigraft poly-L-lysine to a small interfering RNA delivery system. J. Drug Target. 2017, 25, 49–57.
Kodama, Y.; Nakamura, T.; Kurosaki, T.; Egashira, K.; Mine, T.; Nakagawa, H.; Muro, T.; Kitahara, T.; Higuchi, N.; Sasaki, H. Biodegradable nanoparticles composed of dendrigraft poly-L-lysine for gene delivery. Eur. J. Pharm. Biopharm. 2014, 87, 472–479.
Liu, Y.; Li, J. F.; Shao, K.; Huang, R. Q.; Ye, L. Y.; Lou, J. N.; Jiang, C. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials 2010, 31, 5246–5257.
Cottet, H.; Martin, M.; Papillaud, A.; Souaïd, E.; Collet, H.; Commeyras, A. Determination of dendrigraft poly-L-lysine diffusion coefficients by taylor dispersion analysis. Biomacromolecules 2007, 8, 3235–3243.
Ryu, J. H.; Lee, G. J.; Shih, Y. R. V.; Kim, T. I.; Varghese, S. Phenylboronic acid-polymers for biomedical applications. Curr. Med. Chem. 2019, 26, 6797–6816.
Winblade, N. D.; Nikolic, I. D.; Hoffman, A. S.; Hubbell, J. A. Blocking adhesion to cell and tissue surfaces by the chemisorption of a poly-L-lysine-graft-(poly(ethylene glycol); phenylboronic acid) copolymer. Biomacromolecules 2000, 1, 523–533.
Peng, H. F.; Ning, X. Y.; Wei, G.; Wang, S. P.; Dai, G. L.; Ju, A. Q. The preparations of novel cellulose/phenylboronic acid composite intelligent bio-hydrogel and its glucose, pH-responsive behaviors. Carbohydr. Polym. 2018, 195, 349–355.
Ye, L.; Liu, H. M.; Fei, X.; Ma, D.; He, X. Z.; Tang, Q. Y.; Zhao, X.; Zou, H. B.; Chen, X. J.; Kong, X. M. et al. Enhanced endosomal escape of dendrigraft poly-L-lysine polymers for the efficient gene therapy of breast cancer. Nano Res. 2021, 15, 1135–1144.
Liu, C. Y.; Shao, N. M.; Wang, Y. T.; Cheng, Y. Y. Clustering small dendrimers into nanoaggregates for efficient DNA and siRNA delivery with minimal toxicity. Adv. Healthc. Mater. 2016, 5, 584–592.
Liu, H. M.; Chang, H.; Lv, J.; Jiang, C.; Li, Z. X.; Wang, F.; Wang, H.; Wang, M. M.; Liu, C. Y.; Wang, X. Y. et al. Screening of efficient siRNA carriers in a library of surface-engineered dendrimers. Sci. Rep. 2016, 6, 25069.
Liu, C. Y.; Wan, T.; Wang, H.; Zhang, S.; Ping, Y.; Cheng, Y. Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 2019, 5, eaaw8922.
Abnous, K.; Danesh, N. M.; Ramezani, M.; Alibolandi, M.; Bahreyni, A.; Lavaee, P.; Moosavian, S. A.; Taghdisi, S. M. A smart ATP-responsive chemotherapy drug-free delivery system using a DNA nanostructure for synergistic treatment of breast cancer in vitro and in vivo. J. Drug Target. 2020, 28, 852–859.
Ma, D.; Liu, H. M.; Zhao, P. P.; Ye, L.; Zou, H. B.; Zhao, X.; Dai, H. L.; Kong, X. M.; Liu, P. F. Programing assembling/releasing multifunctional miRNA nanomedicine to treat prostate cancer. ACS Appl. Mater. Interfaces 2020, 12, 9032–9040.
Friedl, P.; Alexander, S. Cancer invasion and the microenvironment: Plasticity and reciprocity. Cell 2011, 147, 992–1009.
Paul, C. D.; Mistriotis, P.; Konstantopoulos, K. Cancer cell motility: Lessons from migration in confined spaces. Nat. Rev. Cancer 2017, 17, 131–140.
Mattheolabakis, G.; Milane, L.; Singh, A.; Amiji, M. M. Hyaluronic acid targeting of CD44 for cancer therapy: From receptor biology to nanomedicine. J. Drug Target. 2015, 23, 605–618.