AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Abnormal intensity and polarization of Raman scattered light at edges of layered MoS2

Yan Zhao1,2Liheng Zheng1,3Shiyi Han2Bo Xu1,2Zheyu Fang3Jin Zhang2Lianming Tong2( )
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
College of Chemistry and Molecular Engineering, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
School of Physics, State Key Lab for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Show Author Information

Graphical Abstract

Abnormal intensity and polarization of Raman scattered light are found at edges of layered MoS2. The Raman intensity can be enhanced obviously when the polarization direction of incident light is parallel to the edges. Forbidden Raman modes are observed at edge regions, and the polarization of Raman scattered light can be modulated by the edge structure. These abnormal phenomena are attributed to the modulation of the electric fields for the incident and Raman scattered light at edges.

Abstract

The edges of two-dimensional (2D) materials can exhibit special structure and thus distinctive properties differing from the interior, such as the modified photoluminescence emission, the improved electrocatalytic activity, and the enhanced nonlinear optical response. In this work, we report the observation of abrupt enhancement of Raman scattered light at edges of layered MoS2, which is closely related to the polarization of the incident light. More importantly, the intensity of out-of-plane A1g mode is enhanced much more obviously than the in-plane E2g1 mode. The unique optical effect at edges is also reflected on the alteration of Raman selection rule. The forbidden Raman modes are observed at edge region, and the polarization of Raman scattered light can be modulated by the edge structure, which differs obviously from that of the interior. We attribute these particular performances to the modulation of the intensity and distribution of the electric field for the incident and Raman scattered light at the edge. This work provides a systematic research on the intensity and polarization modulation of the Raman scattering at edges, which would be helpful for understanding the distinctive optical properties of the edge structure.

Electronic Supplementary Material

Download File(s)
12274_2022_4256_MOESM1_ESM.pdf (1.6 MB)

References

1

Duong, D. L.; Yun, S. J.; Lee, Y. H. Van der Waals layered materials: Opportunities and challenges. ACS Nano 2017, 11, 11803–11830.

2

Schwierz, F.; Pezoldt, J.; Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261–8283.

3

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

4

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

5

Huang, Y. L.; Chen, Y. F.; Zhang, W. J.; Quek, S. Y.; Chen, C. H.; Li, L. J.; Hsu, W. T.; Chang, W. H.; Zheng, Y. J.; Chen, W. et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 2015, 6, 6298.

6

Huang, T. X.; Cong, X.; Wu, S. S.; Lin, K. Q.; Yao, X.; He, Y. H.; Wu, J. B.; Bao, Y. F.; Huang, S. C.; Wang, X. et al. Probing the edge-related properties of atomically thin MoS2 at nanoscale. Nat. Commun. 2019, 10, 5544.

7

Chow, P. K.; Jacobs-Gedrim, R. B.; Gao, J.; Lu, T. M.; Yu, B.; Terrones, H.; Koratkar, N. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano 2015, 9, 1520–1527.

8

Jia, X. T.; Campos-Delgado, J.; Terrones, M.; Meunier, V.; Dresselhaus, M. S. Graphene edges: A review of their fabrication and characterization. Nanoscale 2011, 3, 86–95.

9

Zhang, C. D.; Chen, Y. X.; Huang, J. K.; Wu, X. X.; Li, L. J.; Yao, W.; Tersoff, J.; Shih, C. K. Visualizing band offsets and edge states in bilayer-monolayer transition metal dichalcogenides lateral heterojunction. Nat. Commun. 2016, 7, 10349.

10

Yin, X. B.; Ye, Z. Y.; Chenet, D. A.; Ye, Y.; O’Brien, K.; Hone, J. C.; Zhang, X. Edge nonlinear optics on a MoS2 atomic monolayer. Science 2014, 344, 488–490.

11

Duan, J. H.; Chen, R. K.; Cheng, Y.; Yang, T. Z.; Zhai, F.; Dai, Q.; Chen, J. N. Optically unraveling the edge chirality-dependent band structure and plasmon damping in graphene edges. Adv. Mater. 2018, 30, 1800367.

12

Okada, S. Energetics of nanoscale graphene ribbons: Edge geometries and electronic structures. Phys. Rev. B 2008, 77, 041408(R).

13

Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454.

14

Bao, W.; Borys, N. J.; Ko, C.; Suh, J.; Fan, W.; Thron, A.; Zhang, Y. J.; Buyanin, A.; Zhang, J.; Cabrini, S. et al. Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide. Nat. Commun. 2015, 6, 7993.

15

Lin, X. Q.; Liu, Y. Y.; Wang, K.; Wei, C.; Zhang, W.; Yan, Y. L.; Li, Y. J.; Yao, J. N.; Zhao, Y. S. Two-dimensional pyramid-like WS2 layered structures for highly efficient edge second-harmonic generation. ACS Nano 2018, 12, 689–696.

16

You, Y. M.; Ni, Z. H.; Yu, T.; Shen, Z. X. Edge chirality determination of graphene by Raman spectroscopy. Appl. Phys. Lett. 2008, 93, 163112.

17

Zhang, S. S.; Zhang, N.; Zhao, Y.; Cheng, T.; Li, X. B.; Feng, R.; Xu, H.; Liu, Z. R.; Zhang, J.; Tong, L. M. Spotting the differences in two-dimensional materials—The Raman scattering perspective. Chem. Soc. Rev. 2018, 47, 3217–3240.

18

Zhang, X.; Tan, Q. H.; Wu, J. B.; Shi, W.; Tan, P. H. Review on the Raman spectroscopy of different types of layered materials. Nanoscale 2016, 8, 6435–6450.

19

Loudon, R. The Raman effect in crystals. Adv. Phys. 2001, 50, 813–864.

20

Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S. Edge phonons in black phosphorus. Nat. Commun. 2016, 7, 12191.

21

Guo, Y.; Zhang, W. X.; Wu, H. C.; Han, J. F.; Zhang, Y. L.; Lin, S. H.; Liu, C. R.; Xu, K.; Qiao, J. S.; Ji, W. et al. Discovering the forbidden Raman modes at the edges of layered materials. Sci. Adv. 2018, 4, eaau6252.

22

Dai, Z. G.; Hu, G. W.; Si, G. Y.; Ou, Q. D.; Zhang, Q.; Balendhran, S.; Rahman, F.; Zhang, B. Y.; Ou, J. Z.; Li, G. G. et al. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nat. Commun. 2020, 11, 6086.

23

Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.

24

Guo, Y.; Liu, C. R.; Yin, Q. F.; Wei, C. R.; Lin, S. H.; Hoffman, T. B.; Zhao, Y. D.; Edgar, J. H.; Chen, Q.; Lau, S. P. et al. Distinctive in-plane cleavage behaviors of two-dimensional layered materials. ACS Nano 2016, 10, 8980–8988.

25

Poborchii, V.; Tada, T.; Kanayama, T. Edge-enhanced Raman scattering in Si nanostripes. Appl. Phys. Lett. 2009, 94, 131907.

26

Liang, L. B.; Meunier, V. First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 2014, 6, 5394–5401.

27

Wieting, T. J.; Verble, J. L. Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS2. Phys. Rev. B 1971, 3, 4286.

28

Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

29

Zhao, Y.; Han, S. Y.; Zhang, J.; Tong, L. M. Helicity-resolved resonant Raman spectroscopy of layered WS2. J. Raman Spectrosc. 2021, 52, 525–531.

30

Xu, B.; Mao, N. N.; Zhao, Y.; Tong, L. M.; Zhang, J. Polarized Raman spectroscopy for determining crystallographic orientation of low-dimensional materials. J. Phys. Chem. Lett. 2021, 12, 7442–7452.

31

Chen, S. Y.; Zheng, C. X.; Fuhrer, M. S.; Yan, J. Helicity-resolved Raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers. Nano Lett. 2015, 15, 2526–2532.

32

Zhao, Y.; Zhang, S. S.; Shi, Y. P.; Zhang, Y. F.; Saito, R.; Zhang, J.; Tong, L. M. Characterization of excitonic nature in Raman spectra using circularly polarized light. ACS Nano 2020, 14, 10527–10535.

Nano Research
Pages 6416-6421
Cite this article:
Zhao Y, Zheng L, Han S, et al. Abnormal intensity and polarization of Raman scattered light at edges of layered MoS2. Nano Research, 2022, 15(7): 6416-6421. https://doi.org/10.1007/s12274-022-4256-z
Topics:

856

Views

2

Crossref

2

Web of Science

2

Scopus

1

CSCD

Altmetrics

Received: 15 December 2021
Revised: 27 January 2022
Accepted: 20 February 2022
Published: 21 April 2022
© Tsinghua University Press 2022
Return