AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Quantum-dot light-emitting diodes with Fermi-level pinning at the hole-injection/hole-transporting interfaces

Maopeng Xu1,§Desui Chen1,§Jian Lin2,§Xiuyuan Lu1Yunzhou Deng1Siyu He1Xitong Zhu1Wangxiao Jin1Yizheng Jin1( )
Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China

§ Maopeng Xu, Desui Chen, and Jian Lin contributed equally to this work.

Show Author Information

Graphical Abstract

For the quantum-dot light-emitting diodes (QLEDs) with Fermi-level pinning at the holeinjection/hole-transporting interface, despite the same hole-injection barriers, hole-injection layers (HILs) with higher work functions are beneficial for improving device performance.

Abstract

Quantum-dot light-emitting diodes (QLEDs) are multilayer electroluminescent devices promising for next-generation display and solid-state-lighting technologies. In the state-of-the-art QLEDs, hole-injection layers (HILs) with high work functions are generally used to achieve efficient hole injection. In these devices, Fermi-level pinning, a phenomenon often observed in heterojunctions involving organic semiconductors, can take place in the hole-injection/hole-transporting interfaces. However, an in-depth understanding of the impacts of Fermi-level pinning at the hole-injection/hole-transporting interfaces on the operation and performance of QLEDs is still lacking. Here, we develop a set of NiOx HILs with controlled work functions of 5.2–5.9 eV to investigate QLEDs with Fermi-level pinning at the hole-injection/hole-transporting interfaces. The results show that despite that Fermi-level pinning induces identical apparent hole-injection barriers, the red QLEDs using HILs with higher work functions show improved efficiency roll-off and better operational stability. Remarkably, the devices using the NiOx HILs with a work function of 5.9 eV demonstrate a peak external quantum efficiency of ~ 18.0% and a long T95 operational lifetime of 8,800 h at 1,000 cd·m−2, representing the best-performing QLEDs with inorganic HILs. Our work provides a key design principle for future developments of the hole-injection/hole-transporting interfaces of QLEDs.

Electronic Supplementary Material

Download File(s)
12274_2022_4260_MOESM1_ESM.pdf (483.9 KB)

References

1

Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.

2

Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803.

3

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

4

Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

5

Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

6

Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics. 2015, 9, 259–266.

7

Zou, Y. T.; Ban, M. Y.; Cui, W.; Huang, Q.; Wu, C.; Liu, J. W.; Wu, H. H.; Song, T.; Sun, B. Q. A general solvent selection strategy for solution processed quantum dots targeting high performance light-emitting diode. Adv. Funct. Mater. 2017, 27.1603325.

8

Acharya, K. P.; Titov, A.; Hyvonen, J.; Wang, C. G.; Tokarz, J.; Holloway, P. H. High efficiency quantum dot light emitting diodes from positive aging. Nanoscale 2017, 9, 14451–14457.

9

Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.

10

Zhang, Z. X.; Ye, Y. X.; Pu, C. D.; Deng, Y. Z.; Dai, X. L.; Chen, X. P.; Chen, D.; Zheng, X. R.; Gao, Y.; Fang, W. et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv. Mater. 2018, 30, 1801387.

11

Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. Z.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

12

Luo, H. X.; Zhang, W. J.; Li, M. L.; Yang, Y. X.; Guo, M. X.; Tsang, S. W.; Chen, S. Origin of subthreshold turn-on in quantum-dot light-emitting diodes. ACS Nano 2019, 13, 8229–8236.

13

Sun, Y. Z.; Su, Q.; Zhang, H.; Wang, F.; Zhang, S. D.; Chen, S. M. Investigation on thermally induced efficiency roll-off: Toward efficient and ultrabright quantum-dot light-emitting diodes. ACS Nano 2019, 13, 11433–11442.

14

Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.

15

Li, Y.; Hou, X. Q.; Dai, X. L.; Yao, Z. L.; Lv, L. L.; Jin, Y. Z.; Peng, X. G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448–6452.

16

Pu, C. D.; Dai, X. L.; Shu, Y. F.; Zhu, M. Y.; Deng, Y. Z.; Jin, Y. Z.; Peng, X. G. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.

17

Lin, J.; Dai, X. L.; Liang, X. Y.; Chen, D. S.; Zheng, X. R.; Li, Y. F.; Deng, Y. Z.; Du, H.; Ye, Y. X.; Chen, D. et al. High-performance quantum-dot light-emitting diodes using NiOx hole-injection layers with a high and stable work function. Adv. Funct. Mater. 2020, 30, 1907265.

18

Deng, Y. Z.; Lin, X.; Fang, W.; Di, D. W.; Wang, L. J.; Friend, R. H.; Peng, X. G.; Jin, Y. Z. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 2020, 11, 2309.

19

Chen, D. S.; Chen, D.; Dai, X. L.; Zhang, Z. X.; Lin, J.; Deng, Y. Z.; Hao, Y. L.; Zhang, C.; Zhu, H. M.; Gao, F. et al. Shelf-stable quantum-dot light-emitting diodes with high operational performance. Adv. Mater. 2020, 32, e2006178.

20

Ye, Y. X.; Zheng, X. R.; Chen, D. S.; Deng, Y. Z.; Chen, D.; Hao, Y. L.; Dai, X. L.; Jin, Y. Z. Design of the hole-injection/hole-transport interfaces for stable quantum-dot light-emitting diodes. J. Phys. Chem. Lett. 2020, 11, 4649–4654.

21

Liu, D. Q.; Cao, S.; Wang, S. Y.; Wang, H. Q.; Dai, W.; Zou, B. S.; Zhao, J. L.; Wang, Y. J. Highly stable red quantum dot light-emitting diodes with long T95 operation lifetimes. J. Phys. Chem. Lett. 2020, 11, 3111–3115.

22

Du, H.; Ma, L. Y.; Wang, X.; Li, Y. F.; Xu, M. P.; Liang, X. Y.; Chen, D. S.; Jin, Y. Z. Synthesis of Cu-modified nickel oxide nanocrystals and their applications as hole-injection layers for quantum-dot light-emitting diodes. Chem.—Eur. J. 2021, 27, 11298–11302.

23

Chen, Z. N.; Su, Q.; Qin, Z. Y.; Chen, S. M. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Res. 2021, 14, 320–327.

24
Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. High-performance green and blue quantum-dot light-emitting diodes with eliminated charge leakage. 2021, arXiv: 2111.11752. arXiv.org e-Print archive. https://arxiv.53yu.com/abs/2111.11752 (accessed 23 November, 2021).
25

Li, X. Y.; Zhao, Y. B.; Fan, F. J.; Levina, L.; Liu, M.; Quintero-Bermudez, R.; Gong, X. W.; Quan, L. N.; Fan, J.; Yang, Z. Y.; Hoogland, S. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photonics 2018, 12, 159–164.

26

Yang, X. Y.; Ma, Y. Y.; Mutlugun, E.; Zhao, Y. B.; Leck, K. S.; Tan, S. T.; Demir, H. V.; Zhang, Q. Y.; Du, H. J.; Sun, X. W. Stable, efficient, and all-solution-processed quantum dot light-emitting diodes with double-sided metal oxide nanoparticle charge transport layers. ACS Appl. Mater. Interfaces 2014, 6, 495–499.

27

Zheng, C. X.; Li, F. S.; Zeng, Q. Y.; Hu, H. L.; Guo, T. L. Aqueous solution-processed molybdenum oxide as an efficient hole injection layer for flexible quantum dot light emitting diodes. Thin Solid Films 2019, 669, 387–391.

28

Zhu, Y. B.; Hu, H. L.; Liu, Y.; Chen, M. S.; Lin, W. Z.; Ye, Y.; Guo, T. L.; Li, F. S. All-solution-processed high-performance quantum dot light emitting devices employing an inorganic thiocyanate as hole injection layer. Org. Electron. 2019, 70, 279–285.

29

Sun, Y. Z.; Chen, W.; Wu, Y. H.; He, Z. B.; Zhang, S. D.; Chen, S. M. A low-temperature-annealed and UV-ozone-enhanced combustion derived nickel oxide hole injection layer for flexible quantum dot light-emitting diodes. Nanoscale 2019, 11, 1021–1028.

30

Shin, J. S.; Kim, T. Y.; Heo, S. B.; Hong, J. A.; Park, Y.; Kang, S. J. Improving the performance of quantum-dot light-emitting diodes via an organic-inorganic hybrid hole injection layer. RSC Adv. 2021, 11, 4168–4172.

31

Tengstedt, C.; Osikowicz, W.; Salaneck, W. R.; Parker, I. D.; Hsu, C. H.; Fahlman, M. Fermi-level pinning at conjugated polymer interfaces. Appl. Phys. Lett. 2006, 88, 053502.

32

Braun, S.; Salaneck, W. R.; Fahlman, M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 2009, 21, 1450–1472.

33

Zhou, M.; Chua, L. L.; Png, R. Q.; Yong, C. K.; Sivaramakrishnan, S.; Chia, P. J.; Wee, A. T. S.; Friend, R. H.; Ho, P. K. H. Role of δ-hole-doped interfaces at Ohmic contacts to organic semiconductors. Phys. Rev. Lett. 2009, 103, 036601.

34

Zhou, M.; Png, R. Q.; Sivaramakrishnan, S.; Chia, P. J.; Yong, C. K.; Chua, L. L.; Ho, P. K. H. Determination of the interface δ-hole density in a blue-emitting organic semiconductor diode by electromodulated absorption spectroscopy. Appl. Phys. Lett. 2010, 97, 113505.

35

Manders, J. R.; Tsang, S. W.; Hartel, M. J.; Lai, T. H.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F. Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 2013, 23, 2993–3001.

36

Wang, L. J.; Rangger, G. M.; Romaner, L.; Heimel, G.;Bučko, T.; Ma, Z. Y.; Li, Q. K.; Shuai, Z. G.; Zojer, E. Electronic structure of self-assembled monolayers on Au(111) surfaces: The impact of backbone polarizability. Adv. Funct. Mater. 2009, 19, 3766–3775.

37

Blakesley, J. C.; Greenham, N. C. Charge transfer at polymer-electrode interfaces: The effect of energetic disorder and thermal injection on band bending and open-circuit voltage. J. Appl. Phys. 2009, 106, 034507.

38

Lange, I.; Blakesley, J. C.; Frisch, J.; Vollmer, A.; Koch, N.; Neher, D. Band bending in conjugated polymer layers. Phys. Rev. Lett. 2011, 106, 216402.

39

Nesterov, A.; Paasch, G.; Scheinert, S.; Lindner, T. Simulation study of the influence of polymer modified anodes on organic LED performance. Synth. Met. 2002, 130, 165–175.

40

Su, Q.; Chen, S. M. Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes. Nat. Commun. 2022, 13, 369.

41

Jiang, Y. B.; Jiang, L.; Yeung, F. S. Y.; Xu, P.; Chen, S. M.; Kwok, H. S.; Li, G. J. All-inorganic quantum-dot light-emitting diodes with reduced exciton quenching by a MgO decorated inorganic hole transport layer. ACS Appl. Mater. Interfaces 2019, 11, 11119–11124.

42

Yang, X. Y.; Zhang, Z. H.; Ding, T.; Wang, N.; Chen, G.; Dang, C. N.; Demir, H. V.; Sun, X. W. High-efficiency all-inorganic full-colour quantum dot light-emitting diodes. Nano Energy 2018, 46, 229–233.

43

Bae, W. K.; Park, Y. S.; Lim, J.; Lee, D.; Padilha, L. A.; McDaniel, H.; Robel, I.; Lee, C.; Pietryga, J. M.; Klimov, V. I. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 2013, 4, 2661.

44

Lim, J.; Park, Y. S.; Wu, K. F.; Yun, H. J.; Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 2018, 18, 6645–6653.

45

Hu, Z.; Liu, S. J.; Qin, H. Y.; Zhou, J. H.; Peng, X. G. Oxygen stabilizes photoluminescence of CdSe/CdS core/shell quantum dots via deionization. J. Am. Chem. Soc. 2020, 142, 4254–4264.

46

Qin, W.; Guyot-Sionnest, P. Evidence for the role of holes in blinking: Negative and oxidized CdSe/CdS dots. ACS Nano 2012, 6, 9125–9132.

47

Rinehart, J. D.; Schimpf, A. M.; Weaver, A. L.; Cohn, A. W.; Gamelin, D. R. Photochemical electronic doping of colloidal CdSe nanocrystals. J. Am. Chem. Soc. 2013, 135, 18782–18785.

48

Han, M. G.;Lee, Y.; Kwon, H. I.; Lee, H.; Kim, T.; Won, Y. H.; Jang, E. InP-based quantum dot light-emitting diode with a blended emissive layer. ACS Energy Lett. 2021, 6, 1577–1585.

Nano Research
Pages 7453-7459
Cite this article:
Xu M, Chen D, Lin J, et al. Quantum-dot light-emitting diodes with Fermi-level pinning at the hole-injection/hole-transporting interfaces. Nano Research, 2022, 15(8): 7453-7459. https://doi.org/10.1007/s12274-022-4260-3
Topics:

916

Views

10

Crossref

9

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 30 November 2021
Revised: 03 February 2022
Accepted: 18 February 2022
Published: 04 April 2022
© Tsinghua University Press 2022
Return