Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Quantum-dot light-emitting diodes (QLEDs) are multilayer electroluminescent devices promising for next-generation display and solid-state-lighting technologies. In the state-of-the-art QLEDs, hole-injection layers (HILs) with high work functions are generally used to achieve efficient hole injection. In these devices, Fermi-level pinning, a phenomenon often observed in heterojunctions involving organic semiconductors, can take place in the hole-injection/hole-transporting interfaces. However, an in-depth understanding of the impacts of Fermi-level pinning at the hole-injection/hole-transporting interfaces on the operation and performance of QLEDs is still lacking. Here, we develop a set of NiOx HILs with controlled work functions of 5.2–5.9 eV to investigate QLEDs with Fermi-level pinning at the hole-injection/hole-transporting interfaces. The results show that despite that Fermi-level pinning induces identical apparent hole-injection barriers, the red QLEDs using HILs with higher work functions show improved efficiency roll-off and better operational stability. Remarkably, the devices using the NiOx HILs with a work function of 5.9 eV demonstrate a peak external quantum efficiency of ~ 18.0% and a long T95 operational lifetime of 8,800 h at 1,000 cd·m−2, representing the best-performing QLEDs with inorganic HILs. Our work provides a key design principle for future developments of the hole-injection/hole-transporting interfaces of QLEDs.
Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.
Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803.
Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.
Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.
Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.
Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics. 2015, 9, 259–266.
Zou, Y. T.; Ban, M. Y.; Cui, W.; Huang, Q.; Wu, C.; Liu, J. W.; Wu, H. H.; Song, T.; Sun, B. Q. A general solvent selection strategy for solution processed quantum dots targeting high performance light-emitting diode. Adv. Funct. Mater. 2017, 27.1603325.
Acharya, K. P.; Titov, A.; Hyvonen, J.; Wang, C. G.; Tokarz, J.; Holloway, P. H. High efficiency quantum dot light emitting diodes from positive aging. Nanoscale 2017, 9, 14451–14457.
Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.
Zhang, Z. X.; Ye, Y. X.; Pu, C. D.; Deng, Y. Z.; Dai, X. L.; Chen, X. P.; Chen, D.; Zheng, X. R.; Gao, Y.; Fang, W. et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv. Mater. 2018, 30, 1801387.
Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. Z.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.
Luo, H. X.; Zhang, W. J.; Li, M. L.; Yang, Y. X.; Guo, M. X.; Tsang, S. W.; Chen, S. Origin of subthreshold turn-on in quantum-dot light-emitting diodes. ACS Nano 2019, 13, 8229–8236.
Sun, Y. Z.; Su, Q.; Zhang, H.; Wang, F.; Zhang, S. D.; Chen, S. M. Investigation on thermally induced efficiency roll-off: Toward efficient and ultrabright quantum-dot light-emitting diodes. ACS Nano 2019, 13, 11433–11442.
Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.
Li, Y.; Hou, X. Q.; Dai, X. L.; Yao, Z. L.; Lv, L. L.; Jin, Y. Z.; Peng, X. G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448–6452.
Pu, C. D.; Dai, X. L.; Shu, Y. F.; Zhu, M. Y.; Deng, Y. Z.; Jin, Y. Z.; Peng, X. G. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.
Lin, J.; Dai, X. L.; Liang, X. Y.; Chen, D. S.; Zheng, X. R.; Li, Y. F.; Deng, Y. Z.; Du, H.; Ye, Y. X.; Chen, D. et al. High-performance quantum-dot light-emitting diodes using NiOx hole-injection layers with a high and stable work function. Adv. Funct. Mater. 2020, 30, 1907265.
Deng, Y. Z.; Lin, X.; Fang, W.; Di, D. W.; Wang, L. J.; Friend, R. H.; Peng, X. G.; Jin, Y. Z. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 2020, 11, 2309.
Chen, D. S.; Chen, D.; Dai, X. L.; Zhang, Z. X.; Lin, J.; Deng, Y. Z.; Hao, Y. L.; Zhang, C.; Zhu, H. M.; Gao, F. et al. Shelf-stable quantum-dot light-emitting diodes with high operational performance. Adv. Mater. 2020, 32, e2006178.
Ye, Y. X.; Zheng, X. R.; Chen, D. S.; Deng, Y. Z.; Chen, D.; Hao, Y. L.; Dai, X. L.; Jin, Y. Z. Design of the hole-injection/hole-transport interfaces for stable quantum-dot light-emitting diodes. J. Phys. Chem. Lett. 2020, 11, 4649–4654.
Liu, D. Q.; Cao, S.; Wang, S. Y.; Wang, H. Q.; Dai, W.; Zou, B. S.; Zhao, J. L.; Wang, Y. J. Highly stable red quantum dot light-emitting diodes with long T95 operation lifetimes. J. Phys. Chem. Lett. 2020, 11, 3111–3115.
Du, H.; Ma, L. Y.; Wang, X.; Li, Y. F.; Xu, M. P.; Liang, X. Y.; Chen, D. S.; Jin, Y. Z. Synthesis of Cu-modified nickel oxide nanocrystals and their applications as hole-injection layers for quantum-dot light-emitting diodes. Chem.—Eur. J. 2021, 27, 11298–11302.
Chen, Z. N.; Su, Q.; Qin, Z. Y.; Chen, S. M. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Res. 2021, 14, 320–327.
Li, X. Y.; Zhao, Y. B.; Fan, F. J.; Levina, L.; Liu, M.; Quintero-Bermudez, R.; Gong, X. W.; Quan, L. N.; Fan, J.; Yang, Z. Y.; Hoogland, S. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photonics 2018, 12, 159–164.
Yang, X. Y.; Ma, Y. Y.; Mutlugun, E.; Zhao, Y. B.; Leck, K. S.; Tan, S. T.; Demir, H. V.; Zhang, Q. Y.; Du, H. J.; Sun, X. W. Stable, efficient, and all-solution-processed quantum dot light-emitting diodes with double-sided metal oxide nanoparticle charge transport layers. ACS Appl. Mater. Interfaces 2014, 6, 495–499.
Zheng, C. X.; Li, F. S.; Zeng, Q. Y.; Hu, H. L.; Guo, T. L. Aqueous solution-processed molybdenum oxide as an efficient hole injection layer for flexible quantum dot light emitting diodes. Thin Solid Films 2019, 669, 387–391.
Zhu, Y. B.; Hu, H. L.; Liu, Y.; Chen, M. S.; Lin, W. Z.; Ye, Y.; Guo, T. L.; Li, F. S. All-solution-processed high-performance quantum dot light emitting devices employing an inorganic thiocyanate as hole injection layer. Org. Electron. 2019, 70, 279–285.
Sun, Y. Z.; Chen, W.; Wu, Y. H.; He, Z. B.; Zhang, S. D.; Chen, S. M. A low-temperature-annealed and UV-ozone-enhanced combustion derived nickel oxide hole injection layer for flexible quantum dot light-emitting diodes. Nanoscale 2019, 11, 1021–1028.
Shin, J. S.; Kim, T. Y.; Heo, S. B.; Hong, J. A.; Park, Y.; Kang, S. J. Improving the performance of quantum-dot light-emitting diodes via an organic-inorganic hybrid hole injection layer. RSC Adv. 2021, 11, 4168–4172.
Tengstedt, C.; Osikowicz, W.; Salaneck, W. R.; Parker, I. D.; Hsu, C. H.; Fahlman, M. Fermi-level pinning at conjugated polymer interfaces. Appl. Phys. Lett. 2006, 88, 053502.
Braun, S.; Salaneck, W. R.; Fahlman, M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 2009, 21, 1450–1472.
Zhou, M.; Chua, L. L.; Png, R. Q.; Yong, C. K.; Sivaramakrishnan, S.; Chia, P. J.; Wee, A. T. S.; Friend, R. H.; Ho, P. K. H. Role of δ-hole-doped interfaces at Ohmic contacts to organic semiconductors. Phys. Rev. Lett. 2009, 103, 036601.
Zhou, M.; Png, R. Q.; Sivaramakrishnan, S.; Chia, P. J.; Yong, C. K.; Chua, L. L.; Ho, P. K. H. Determination of the interface δ-hole density in a blue-emitting organic semiconductor diode by electromodulated absorption spectroscopy. Appl. Phys. Lett. 2010, 97, 113505.
Manders, J. R.; Tsang, S. W.; Hartel, M. J.; Lai, T. H.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F. Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 2013, 23, 2993–3001.
Wang, L. J.; Rangger, G. M.; Romaner, L.; Heimel, G.;Bučko, T.; Ma, Z. Y.; Li, Q. K.; Shuai, Z. G.; Zojer, E. Electronic structure of self-assembled monolayers on Au(111) surfaces: The impact of backbone polarizability. Adv. Funct. Mater. 2009, 19, 3766–3775.
Blakesley, J. C.; Greenham, N. C. Charge transfer at polymer-electrode interfaces: The effect of energetic disorder and thermal injection on band bending and open-circuit voltage. J. Appl. Phys. 2009, 106, 034507.
Lange, I.; Blakesley, J. C.; Frisch, J.; Vollmer, A.; Koch, N.; Neher, D. Band bending in conjugated polymer layers. Phys. Rev. Lett. 2011, 106, 216402.
Nesterov, A.; Paasch, G.; Scheinert, S.; Lindner, T. Simulation study of the influence of polymer modified anodes on organic LED performance. Synth. Met. 2002, 130, 165–175.
Su, Q.; Chen, S. M. Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes. Nat. Commun. 2022, 13, 369.
Jiang, Y. B.; Jiang, L.; Yeung, F. S. Y.; Xu, P.; Chen, S. M.; Kwok, H. S.; Li, G. J. All-inorganic quantum-dot light-emitting diodes with reduced exciton quenching by a MgO decorated inorganic hole transport layer. ACS Appl. Mater. Interfaces 2019, 11, 11119–11124.
Yang, X. Y.; Zhang, Z. H.; Ding, T.; Wang, N.; Chen, G.; Dang, C. N.; Demir, H. V.; Sun, X. W. High-efficiency all-inorganic full-colour quantum dot light-emitting diodes. Nano Energy 2018, 46, 229–233.
Bae, W. K.; Park, Y. S.; Lim, J.; Lee, D.; Padilha, L. A.; McDaniel, H.; Robel, I.; Lee, C.; Pietryga, J. M.; Klimov, V. I. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 2013, 4, 2661.
Lim, J.; Park, Y. S.; Wu, K. F.; Yun, H. J.; Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 2018, 18, 6645–6653.
Hu, Z.; Liu, S. J.; Qin, H. Y.; Zhou, J. H.; Peng, X. G. Oxygen stabilizes photoluminescence of CdSe/CdS core/shell quantum dots via deionization. J. Am. Chem. Soc. 2020, 142, 4254–4264.
Qin, W.; Guyot-Sionnest, P. Evidence for the role of holes in blinking: Negative and oxidized CdSe/CdS dots. ACS Nano 2012, 6, 9125–9132.
Rinehart, J. D.; Schimpf, A. M.; Weaver, A. L.; Cohn, A. W.; Gamelin, D. R. Photochemical electronic doping of colloidal CdSe nanocrystals. J. Am. Chem. Soc. 2013, 135, 18782–18785.
Han, M. G.;Lee, Y.; Kwon, H. I.; Lee, H.; Kim, T.; Won, Y. H.; Jang, E. InP-based quantum dot light-emitting diode with a blended emissive layer. ACS Energy Lett. 2021, 6, 1577–1585.