Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Hydrogen production from water splitting using renewable electric energy is an interesting topic towards the carbon neutral future. Single atom catalysts (SACs) have emerged as a new frontier in the field of catalysis such as hydrogen evolution reaction (HER), owing to their intriguing properties like high activity and excellent chemical selectivity. The catalytic active moiety is often comprised of a single metal atom and its neighboring environment from the supports. Recent published reviews about electric-driven HER tend to classify these SACs by the species of active center atom, nevertheless the influence of their neighboring coordinated atoms from the supports is somehow neglected. Thus we classify the SACs for HER through the type of supports, highlighting the electronic metal–support interaction and their coordination environment from support. Then, we put forward some structural designing strategies including regulating of the central atoms, coordination environments, and metal–support interactions. Finally, the current challenges and future research perspectives of SACs for HER are briefly proposed.
Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.
Abdin, Z.; Tang, C. G.; Liu, Y.; Catchpole, K. Large-scale stationary hydrogen storage via liquid organic hydrogen carriers. iScience 2021, 24, 102966.
Conte, M.; Iacobazzi, A.; Ronchetti, M.; Vellone, R. Hydrogen economy for a sustainable development: State-of-the-art and technological perspectives. J. Power Sources 2001, 100, 171–187.
Barreto, L.; Makihira, A.; Riahi, K. The hydrogen economy in the 21st century: A sustainable development scenario. Int. J. Hydrogen Energy 2003, 28, 267–284.
Chen, L. N.; Qi, Z. Y.; Zhang, S. C.; Su, J.; Somorjai, G. A. Application of single-site catalysts in the hydrogen economy. Trends Chem. 2020, 2, 1114–1125.
Liu, J.; Wu, H. M.; Li, F.; Feng, X. Q.; Zhang, P.; Gao, L. Recent progress in non-precious metal single atomic catalysts for solar and non-solar driven hydrogen evolution reaction. Adv. Sustain. Syst. 2020, 4, 2000151.
Cai, J.; Javed, R.; Ye, D. X.; Zhao, H. B.; Zhang, J. J. Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 22467–22487.
Guan, J. Q.; Bai, X.; Tang, T. M. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837.
Alarawi, A.; Ramalingam, V.; He, J. H. Recent advances in emerging single atom confined two-dimensional materials for water splitting applications. Mater. Today Energy 2019, 11, 1–23.
Lin, H. H.; Wei, K. C.; Yin, Z. Y.; Sun, S. H. Nanocatalysts in electrosynthesis. iScience 2021, 24, 102172.
He, X. H.; He, Q.; Deng, Y. C.; Peng, M.; Chen, H. Y.; Zhang, Y.; Yao, S. Y.; Zhang, M. T.; Xiao, D. Q.; Ma, D. et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 2019, 10, 3663.
Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.
Huang, P. C.; Liu, W.; He, Z. H.; Xiao, C.; Yao, T.; Zou, Y. M.; Wang, C. M.; Qi, Z. M.; Tong, W.; Pan, B. C. et al. Single atom accelerates ammonia photosynthesis. Sci. China Chem. 2018, 61, 1187–1196.
Zheng, X. L.; Tang, J.; Gallo, A.; Torres, J. A. G.; Yu, X. Y.; Athanitis, C. J.; Been, E. M.; Ercius, P.; Mao, H. Y.; Fakra, S. C. et al. Origin of enhanced water oxidation activity in an iridium single atom anchored on NiFe oxyhydroxide catalyst. Proc. Natl. Acad. Sci. USA 2021, 118, e2101817118.
Li, J. Q.; Zhong, L. X.; Tong, L. M.; Yu, Y.; Liu, Q.; Zhang, S. C.; Yin, C.; Qiao, L.; Li, S. Z.; Si, R. et al. Atomic Pd on graphdiyne/graphene heterostructure as efficient catalyst for aromatic nitroreduction. Adv. Funct. Mater. 2019, 29, 1905423.
Ma, Z. X.; Niu, L. J.; Jiang, W. S.; Dong, C. X.; Liu, G. H.; Qu, D.; An, L.; Sun, Z. C. Recent advances of single-atom electrocatalysts for hydrogen evolution reaction. J. Phys.: Mater. 2021, 4, 042002.
Peng, Y.; Lu, B. Z.; Chen, S. W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30, 1801995.
Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2021, 134, e202114450.
Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.
Zhang, X. G.; Lin, H.; Zhang, J.; Qiu, Y. J.; Zhang, Z. D.; Xu, Q.; Meng, G.; Yan, W. S.; Gu, L.; Zheng, L. R. et al. Decreasing the coordinated N atoms in a single-atom Cu catalyst to achieve selective transfer hydrogenation of alkynes. Chem. Sci. 2021, 12, 14599–14605.
Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.
Zheng, X. B.; Cui, P. X.; Qian, Y. M.; Zhao, G. Q.; Zheng, X. S.; Xu, X.; Cheng, Z. X.; Liu, Y. Y.; Dou, S. X.; Sun, W. P. Multifunctional active-center-transferable platinum/lithium cobalt oxide heterostructured electrocatalysts towards superior water splitting. Angew. Chem., Int. Ed. 2020, 59, 14533–14540.
Zheng, X. B.; Chen, Y. P.; Zheng, X. S.; Zhao, G. Q.; Rui, K.; Li, P.; Xu, X.; Cheng, Z. X.; Dou, S. X.; Sun, W. P. Electronic structure engineering of LiCoO2 toward enhanced oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1803482.
Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.
Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.
Cui, T. T.; Ma, L. N.; Wang, S. B.; Ye, C. L.; Liang, X.; Zhang, Z. D.; Meng, G.; Zheng, L. R.; Hu, H. S.; Zhang, J. W. et al. Atomically dispersed Pt-N3C1 sites enabling efficient and selective electrocatalytic C–C bond cleavage in lignin models under ambient conditions. J. Am. Chem. Soc. 2021, 143, 9429–9439.
Zhang, B. W.; Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Fabrication of superior single-atom catalysts toward diverse electrochemical reactions. Small Methods 2019, 3, 1800497.
Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.
Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.
Li, W. H.; Yang, J. R.; Wang, D. S.; Li, Y. D. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022, 8, 119–140.
Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.
Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.
Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.
Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.
Sun, X. H.; Tuo, Y.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.
Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.
Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem. 2020, 132, 1311–1317.
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.
Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.
Sun, M. Z.; Wong, H. H.; Wu, T.; Dougherty, A. W.; Huang, B. L. Stepping out of transition metals: Activating the dual atomic catalyst through main group elements. Adv. Energy Mater. 2021, 11, 2101404.
Sun, M. Z.; Wu, T.; Dougherty, A. W.; Lam, M.; Huang, B. L.; Li, Y. L.; Yan, C. H. Self-validated machine learning study of graphdiyne-based dual atomic catalyst. Adv. Energy Mater. 2021, 11, 2003796.
Sun, M. Z.; Dougherty, A. W.; Huang, B. L.; Li, Y. L.; Yan, C. H. Accelerating atomic catalyst discovery by theoretical calculations–machine learning strategy. Adv. Energy Mater. 2020, 10, 1903949.
Jing, H. Y.; Zhao, Z. Y.; Zhang, J. W.; Zhu, C.; Liu, W.; Li, N. N.; Hao, C.; Shi, Y. T.; Wang, D. S. Atomic evolution of metal-organic frameworks into Co–N3 coupling vacancies by cooperative cascade protection strategy for promoting triiodide reduction. J. Phys. Chem. C 2021, 125, 6147–6156.
Zhao, J.; Ji, S. F.; Guo, C. X.; Li, H. J.; Dong, J. C.; Guo, P.; Wang, D. S.; Li, Y. D.; Toste, F. D. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nat. Catal. 2021, 4, 523–531.
Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.
Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.
Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.
Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. D. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.
Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.
Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.
Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.
Gutić, S. J.; Dobrota, A. S.; Fako, E.; Skorodumova, N. V.; López, N.; Pašti, I. A. Hydrogen evolution reaction—From single crystal to single atom catalysts. Catalysts 2020, 10, 290.
Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.
Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.
Liu, Y. W.; Wu, X.; Li, Z.; Zhang, J.; Liu, S. X.; Liu, S. J.; Gu, L.; Zheng, L. R.; Li, J.; Wang, D. S. et al. Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration. Nat. Commun. 2021, 12, 4205.
Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.
Liu, H. X.; Peng, X. Y.; Liu, X. J. Single-atom catalysts for the hydrogen evolution reaction. ChemElectroChem 2018, 5, 2963–2974.
Pu, Z. H.; Amiinu, I. S.; Cheng, R. L.; Wang, P. Y.; Zhang, C. T.; Mu, S. C.; Zhao, W. Y.; Su, F. M.; Zhang, G. X.; Liao, S. J. et al. Single-atom catalysts for electrochemical hydrogen evolution reaction: Recent advances and future perspectives. Nano-Micro Lett. 2020, 12, 21.
Liu, T.; Li, P.; Yao, N.; Cheng, G. Z.; Chen, S. L.; Luo, W.; Yin, Y. D. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew. Chem. 2019, 131, 4727–4732.
Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.
Zhu, P.; Zhang, M. Y.; Huang, Q. Z.; Tong, K.; Chen, J. X.; Chen, G. F. Influence of deposition pressure on texture of pyrolytic graphite during chemical vapour deposition. Mater. Sci. Technol. 2015, 31, 1698–1705.
Qiu, H. J.; Ito, Y.; Cong, W. T.; Tan, Y. W.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem., Int. Ed. 2015, 54, 14031–14035.
Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.
Ye, S. H.; Luo, F. Y.; Zhang, Q. L.; Zhang, P. Y.; Xu, T. T.; Wang, Q.; He, D. S.; Guo, L. C.; Zhang, Y.; He, C. X. et al. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ. Sci. 2019, 12, 1000–1007.
Fei, H. L.; Dong, J. C.; Wan, C. Z.; Zhao, Z. P.; Xu, X.; Lin, Z. Y.; Wang, Y. L.; Liu, H. T.; Zang, K. T.; Luo, J. et al. Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv. Mater. 2018, 30, 1802146.
Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.
Jiang, J. J.; Jiang, P.; Wang, D. S.; Li, Y. D. The synthetic strategies for single atomic site catalysts based on metal-organic frameworks. Nanoscale 2020, 12, 20580–20589.
Han, A.; Zhang, Z. D.; Yang, J. R.; Wang, D. S.; Li, Y. D. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions. Small 2021, 17, 2004500.
Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Wang, Y.; Dong, J. C.; Wu, K. L.; Cheong, W. C.; Mao, J. J. et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1800396.
Fan, L. L.; Liu, P. F.; Yan, X. C.; Gu, L.; Yang, Z. Z.; Yang, H. G.; Qiu, S. L.; Yao, X. D. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 2016, 7, 10667.
Li, T. F.; Liu, J. J.; Song, Y.; Wang, F. Photochemical solid-phase synthesis of platinum single atoms on nitrogen-doped carbon with high loading as bifunctional catalysts for hydrogen evolution and oxygen reduction reactions. ACS Catal. 2018, 8, 8450–8458.
Zhang, H. B.; An, P. F.; Zhou, W.; Guan, B. Y.; Zhang, P.; Dong, J. C.; Lou, X. W. Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 2018, 4, eaao6657.
Lu, B. Z.; Guo, L.; Wu, F.; Peng, Y.; Lu, J. E.; Smart, T. J.; Wang, N.; Finfrock, Y. Z.; Morris, D.; Zhang, P. et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 10, 631.
Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.
Zhu, P.; Chen, Y.; Zhou, Y.; Yang, Z. X.; Wu, D.; Xiong, X.; Ouyang, F. P. Defect-rich MoS2 nanosheets vertically grown on graphene-protected Ni foams for high efficient electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2018, 43, 14087–14095.
Zhou, Q. L.; Luo, X. H.; Li, Y. L.; Nan, Y. X.; Deng, H. Y.; Ou, E. C.; Xu, W. J. A feasible and environmentally friendly method to simultaneously synthesize MoS2 quantum dots and pore-rich monolayer MoS2 for hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 433–442.
Zhou, Y.; Silva, J. L.; Woods, J. M.; Pondick, J. V.; Feng, Q. L.; Liang, Z. X.; Liu, W.; Lin, L.; Deng, B. C.; Brena, B. et al. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity. Adv. Mater. 2018, 30, 1706076.
Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.
Zhu, P.; Chen, Y.; Zhou, Y.; Yang, Z. X.; Wu, D.; Xiong, X.; Ouyang, F. P. A metallic MoS2 nanosheet array on graphene-protected Ni foam as a highly efficient electrocatalytic hydrogen evolution cathode. J. Mater. Chem. A 2018, 6, 16458–16464.
Zhu, P.; Li, A. L.; Yang, Z. X.; Zhou, Y.; Xiong, X.; Ouyang, F. P. Tuning the electrocatalytic activity of MoS2 nanosheets for hydrogen evolution reaction via cobalt-embedded nitrogen-rich graphene networks. ACS Appl. Energy Mater. 2020, 3, 129–134.
Zhou, Q. L.; Luo, X. H.; Liu, Z.; Li, S. Y.; Nan, Y. X.; Deng, H. Y.; Ma, Y. P.; Xu, W. J. Co-doped 1T′/T phase dominated MoS1+XSe1+Y alloy nanosheets as bifunctional electrocatalyst for overall water splitting. Appl. Surf. Sci. 2020, 513, 145828.
Deng, J.; Li, H. B.; Xiao, J. P.; Tu, Y. C.; Deng, D. H.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Ren, P. J.; Bao, X. H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 2015, 8, 1594–1601.
Lau, T. H. M.; Lu, X. W.; Kulhavý, J.; Wu, S.; Lu, L. L.; Wu, T. S.; Kato, R.; Foord, J. S.; Soo, Y. L.; Suenaga, K. et al. Transition metal atom doping of the basal plane of MoS2 monolayer nanosheets for electrochemical hydrogen evolution. Chem. Sci. 2018, 9, 4769–4776.
Ji, L.; Yan, P. F.; Zhu, C. H.; Ma, C. Y.; Wu, W. Z.; Wei, C.; Shen, Y. L.; Chu, S. Q.; Wang, J. O.; Du, Y. et al. One-pot synthesis of porous 1T-phase MoS2 integrated with single-atom Cu doping for enhancing electrocatalytic hydrogen evolution reaction. Appl. Catal. B:Environ. 2019, 251, 87–93.
Meng, X. Y.; Ma, C.; Jiang, L. Z.; Si, R.; Meng, X. G.; Tu, Y. C.; Yu, L.; Bao, X. H.; Deng, D. H. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem. 2020, 132, 10588–10593.
Luo, R. C.; Luo, M.; Wang, Z. Q.; Liu, P.; Song, S. X.; Wang, X. D.; Chen, M. W. The atomic origin of nickel-doping-induced catalytic enhancement in MoS2 for electrochemical hydrogen production. Nanoscale 2019, 11, 7123–7128.
Wang, L. G.; Duan, X. X.; Liu, X. J.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y. M.; Shi, D. E.; Chen, F. H.; Sun, X. M. et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 2020, 10, 1903137.
Feng, L. L.; Fan, M. H.; Wu, Y. Y.; Liu, Y. P.; Li, G. D.; Chen, H.; Chen, W.; Wang, D. J.; Zou, X. X. Metallic Co9S8 nanosheets grown on carbon cloth as efficient binder-free electrocatalysts for the hydrogen evolution reaction in neutral media. J. Mater. Chem. A 2016, 4, 6860–6867.
Cheng, N. C.; Zhang, L.; Doyle-Davis, K.; Sun, X. L. Single-atom catalysts: From design to application. Electrochem. Energy Rev. 2019, 2, 539–573.
Luo, Z. Y.; Ouyang, Y. X.; Zhang, H.; Xiao, M. L.; Ge, J. J.; Jiang, Z.; Wang, J. L.; Tang, D. M.; Cao, X. Z.; Liu, C. P. et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 2018, 9, 2120.
Jiang, K.; Luo, M.; Liu, Z. X.; Peng, M.; Chen, D. C.; Lu, Y. R.; Chan, T. S.; de Groot, F. M.; Tan, Y. W. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687.
Wang, Q.; Zhao, Z. L.; Dong, S.; He, D. S.; Lawrence, M. J.; Han, S. B.; Cai, C.; Xiang, S. H.; Rodriguez, P.; Xiang, B. et al. Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction. Nano Energy 2018, 53, 458–467.
Zhang, H. B.; Yu, L.; Chen, T.; Zhou, W.; Lou, X. W. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1807086.
Qi, K.; Cui, X. Q.; Gu, L.; Yu, S. S.; Fan, X. F.; Luo, M. C.; Xu, S.; Li, N. B.; Zheng, L. R.; Zhang, Q. H. et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 2019, 10, 5231.
Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.
Duan, H. L.; Wang, C.; Li, G. N.; Tan, H. H.; Hu, W.; Cai, L.; Liu, W.; Li, N.; Ji, Q. Q.; Wang, Y. et al. Single-atom-layer catalysis in a MoS2 monolayer activated by long-range ferromagnetism for the hydrogen evolution reaction: Beyond single-atom catalysis. Angew. Chem. 2021, 133, 7327–7334.
Lau, T. H. M.; Wu, S.; Kato, R.; Wu, T. S.; Kulhavý, J.; Mo, J. Y.; Zheng, J. W.; Foord, J. S.; Soo, Y. L.; Suenaga, K. et al. Engineering monolayer 1T-MoS2 into a bifunctional electrocatalyst via sonochemical doping of isolated transition metal atoms. ACS Catal. 2019, 9, 7527–7534.
He, Q.; Tian, D.; Jiang, H. L.; Cao, D. F.; Wei, S. Q.; Liu, D. B.; Song, P.; Lin, Y.; Song, L. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 2020, 32, 1906972.
Shang, H. S.; Zhao, Z. H.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Li, A.; Dong, J. C.; An, P. F.; Zheng, L. R.; Chen, W. X. Dynamic evolution of isolated Ru-FeP atomic interface sites for promoting the electrochemical hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 22607–22612.
Wu, J.; Han, N. N.; Ning, S. C.; Chen, T.; Zhu, C. Y.; Pan, C. X.; Wu, H. J.; Pennycook, S. J.; Guan, C. Single-atom tungsten-doped CoP nanoarrays as a high-efficiency pH-universal catalyst for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2020, 8, 14825–14832.
Ye, S. H.; Xiong, W.; Liao, P.; Zheng, L. R.; Ren, X. Z.; He, C. X.; Zhang, Q. L.; Liu, J. H. Removing the barrier to water dissociation on single-atom Pt sites decorated with a CoP mesoporous nanosheet array to achieve improved hydrogen evolution. J. Mater. Chem. A 2020, 8, 11246–11254.
Zhang, L. H.; Han, L. L.; Liu, H. X.; Liu, X. J.; Luo, J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem., Int. Ed. 2017, 56, 13694–13698.
Li, M. F.; Duanmu, K.; Wan, C. Z.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W. X.; Zhao, Z. P.; Li, P.; Fei, H. L. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495–503.
Chao, T. T.; Luo, X.; Chen, W. X.; Jiang, B.; Ge, J. J.; Lin, Y.; Wu, G.; Wang, X. Q.; Hu, Y. M.; Zhuang, Z. B. et al. Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem. 2017, 129, 16263–16267.
Chen, C. H.; Wu, D. Y.; Li, Z.; Zhang, R.; Kuai, C. G.; Zhao, X. R.; Dong, C. K.; Qiao, S. Z.; Liu, H.; Du, X. W. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 2019, 9, 1803913.
Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. G.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.
Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.
Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y. E.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.
Gupta, S.; Patel, M. K.; Miotello, A.; Patel, N. Metal boride-based catalysts for electrochemical water-splitting: A review. Adv. Funct. Mater. 2020, 30, 1906481.
Lee, E.; Fokwa, B. P. T. Nonprecious metal borides: Emerging electrocatalysts for hydrogen production. Acc. Chem. Res. 2022, 55, 56–64.
Pu, Z. H.; Liu, T. T.; Zhang, G. X.; Liu, X. H.; Gauthier, M. A.; Chen, Z. X.; Sun, S. H. Nanostructured metal borides for energy-related electrocatalysis: Recent progress, challenges, and perspectives. Small Methods 2021, 5, 2100699.
Li, Q. J.; Zou, X.; Ai, X.; Chen, H.; Sun, L.; Zou, X. X. Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity. Adv. Energy Mater. 2019, 9, 1803369.
Chen, L.; Zhang, L. R.; Yao, L. Y.; Fang, Y. H.; He, L.; Wei, G. F.; Liu, Z. P. Metal boride better than Pt: HCP Pd2B as a superactive hydrogen evolution reaction catalyst. Energy Environ. Sci. 2019, 12, 3099–3105.
Li, H.; Wen, P.; Li, Q.; Dun, C. C.; Xing, J. H.; Lu, C.; Adhikari, S.; Jiang, L.; Carroll, D. L.; Geyer, S. M. Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting. Adv. Energy Mater. 2017, 7, 1700513.
Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z. Y.; Somsen, C.; Muhler, M.; Schuhmann, W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater. 2016, 6, 1502313.
Zhang, R. Q.; Liu, H. X.; Wang, C. F.; Wang, L. C.; Yang, Y. J.; Guo, Y. H. Electroless plating of transition metal boride with high boron content as superior her electrocatalyst. ChemCatChem 2020, 12, 3068–3075.
Park, H.; Encinas, A.; Scheifers, J. P.; Zhang, Y. M.; Fokwa, B. P. T. Boron- dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 5575–5578.
Guo, F. F.; Wu, Y. Y.; Ai, X.; Chen, H.; Li, G. D.; Chen, W.; Zou, X. X. A class of metal diboride electrocatalysts synthesized by a molten salt-assisted reaction for the hydrogen evolution reaction. Chem. Commun. 2019, 55, 8627–8630.
Lee, E.; Park, H.; Joo, H.; Fokwa, B. P. T. Unexpected correlation between boron chain condensation and hydrogen evolution reaction (HER) activity in highly active vanadium borides: Enabling predictions. Angew. Chem., Int. Ed. 2020, 59, 11774–11778.
Sun, X.; Zheng, J. N.; Gao, Y. J.; Qiu, C. L.; Yan, Y. L.; Yao, Z. H.; Deng, S. W.; Wang, J. G. Machine-learning-accelerated screening of hydrogen evolution catalysts in MBenes materials. Appl. Surf. Sci. 2020, 526, 146522.
Zhang, T.; Zhang, B. K.; Peng, Q.; Zhou, J.; Sun, Z. M. Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts. J. Mater. Chem. A 2021, 9, 433–441.
Li, B.; Wu, Y.; Li, N.; Chen, X. Z.; Zeng, X. B.; Arramel; Zhao, X. J.; Jiang, J. Z. Single-metal atoms supported on MBenes for robust electrochemical hydrogen evolution. ACS Appl. Mater. Interfaces 2020, 12, 9261–9267.
Yang, Y.; Qian, Y. M.; Li, H. J.; Zhang, Z. H.; Mu, Y. W.; Do, D.; Zhou, B.; Dong, J.; Yan, W. J.; Qin, Y. et al. O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 2020, 6, eaba6586.
Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.
Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.
Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.
Yin, X. P.; Wang, H. J.; Tang, S. F.; Lu, X. L.; Shu, M.; Si, R.; Lu, T. B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9382–9386.
Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem. 2021, 133, 19233–19239.
Park, J.; Lee, S.; Kim, H. E.; Cho, A.; Kim, S.; Ye, Y.; Han, J. W.; Lee, H.; Jang, J. H.; Lee, J. Investigation of the support effect in atomically dispersed Pt on WO3−x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16038–16042.
Shi, Y.; Ma, Z. R.; Xiao, Y. Y.; Yin, Y. C.; Huang, W. M.; Huang, Z. C.; Zheng, Y. Z.; Mu, F. Y.; Huang, R.; Shi, G. Y. et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 2021, 12, 3021.
Yang, J.; Chen, B. X.; Liu, X. K.; Liu, W.; Li, Z. J.; Dong, J. C.; Chen, W. X.; Yan, W. S.; Yao, T.; Duan, X. Z. et al. Efficient and robust hydrogen evolution: Phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites. Angew. Chem. 2018, 130, 9639–9644.
Wu, C. Q.; Li, D. D.; Ding, S. Q.; Rehman, Z. U.; Liu, Q.; Chen, S. M.; Zhang, B.; Song, L. Monoatomic platinum-anchored metallic MoS2: Correlation between surface dopant and hydrogen evolution. J. Phys. Chem. Lett. 2019, 10, 6081–6087.