AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Kinetically accelerated and high-mass loaded lithium storage enabled by atomic iron embedded carbon nanofibers

Qian Xu1Yanan Li1Chenghao Wu1Xitong Sun1Qiang Li2Huabin Zhang3Le Yu4Yuanyuan Pan2Yujuan Wang1Shiwei Guo1Mengdi Zhang1Han Hu1( )Mingbo Wu1( )
State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

The atomic Fe sites with coordination unsaturated electronic configuration are revealed to be favorable for Li+ bonding and diffusion and the atomic Fe decorated carbon nanofibers afford essentially improved lithium storage performance at high-mass loading.

Abstract

Carbonaceous materials represent the dominant choice of materials for anodic lithium storage in many energy storage devices. Nevertheless, the nonpolar carbonaceous materials offer weak adsorption toward Li+ that largely denies the high-rate Li+ storage. Herein, the atomic Fe sites decorated carbon nanofibers (AICNFs) facilely produced by electrospinning are reported for kinetically accelerated Li+ storage. Theoretical calculation reveals that the atomic Fe sites possess coordination unsaturated electronic configuration, enabling suitable bonding energy and facilitated diffusion path of Li+. As a result, the optimal structure displays a high capacitive contribution up to 95.9% at a scan rate of 2.0 mV·s−1. In addition, ultrahigh capacity retention of 97% is afforded after 5,000 cycles at a current density of 3 A·g−1. Moreover, the interlaced fiber structure enabled by electrospinning benefits structural stability and improved conductivity even at thick electrodes, thus allowing a high areal capacity of 1.76 mAh·cm−2 at a loading of 8 mg·cm−2. Because of these structure and performance merits, the lithium-ion capacitor containing the AICNF-based anode delivers a high energy density and large power density.

Electronic Supplementary Material

Download File(s)
12274_2022_4266_MOESM1_ESM.pdf (2.6 MB)

References

1

Masias, A.; Marcicki, J.; Paxton, W. A. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 2021, 6, 621–630.

2

Su, D. Q.; Huang, M.; Zhang, J. H.; Guo, X. M.; Chen, J. L.; Xue, Y. C.; Yuan, A. H.; Kong, Q. H. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Res. 2020, 13, 2862–2868.

3

Li, Z. N.; Gadipelli, S.; Li, H. C.; Howard, C. A.; Brett, D. J. L.; Shearing, P. R.; Guo, Z. X.; Parkin, I. P.; Li, F. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy 2020, 5, 160–168.

4

Fu, W. B.; Zhao, E. B.; Ma, R. Y.; Sun, Z. F.; Yang, Y.; Sevilla, M.; Fuertes, A. B.; Magasinski, A.; Yushin, G. Anatase TiO2 confined in carbon nanopores for high-energy Li-ion hybrid supercapacitors operating at high rates and subzero temperatures. Adv. Energy Mater. 2020, 10, 1902993.

5

Chen, K. H.; Goel, V.; Namkoong, M. J.; Wied, M.; Müller, S.; Wood, V.; Sakamoto, J.; Thornton, K.; Dasgupta, N. P. Enabling 6 C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes. Adv. Energy Mater. 2021, 11, 2003336.

6

Zhao, X. W.; Wu, Y. Z.; Wang, Y. S.; Wu, H. S.; Yang, Y. W.; Wang, Z. P.; Dai, L. X.; Shang, Y. Y.; Cao, A. Y. High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes. Nano Res. 2020, 13, 1044–1052.

7

Wang, L.; Li, Y. Y.; Wang, S.; Zhou, P. F.; Zhao, Z. D.; Li, X. W.; Zhou, J.; Zhuo, S. P. Fluorinated nanographite as a cathode material for lithium primary batteries. ChemElectroChem 2019, 6, 2201–2207.

8

Zhang, J. J.; Yu, A. S. Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci. Bull. 2015, 60, 823–838.

9

Zhao, H. Y.; Zhang, F.; Zhang, S. M.; He, S. N.; Shen, F.; Han, X. G.; Yin, Y. D.; Gao, C. B. Scalable synthesis of sub-100 nm hollow carbon nanospheres for energy storage applications. Nano Res. 2018, 11, 1822–1833.

10

Oh, Y. J.; Park, J. H.; Park, J. S.; Kim, S. S.; Hong, S. J.; Na, Y. W.; Kim, J. H.; Nam, S.; Yang, S. J. Fast-chargeable N-doped multi-oriented graphitic carbon as a Li-intercalation compound. Energy Storage Mater. 2022, 44, 416–424.

11

Jung, S. K.; Hwang, I.; Chang, D.; Park, K. Y.; Kim, S. J.; Seong, W. M.; Eum, D.; Park, J.; Kim, B.; Kim, J. et al. Nanoscale phenomena in lithium-ion batteries. Chem. Rev. 2020, 120, 6684–6737.

12

Hu, X.; Zhong, G. B.; Li, J. W.; Liu, Y. J.; Yuan, J.; Chen, J. X.; Zhan, H. B.; Wen, Z. H. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 2020, 13, 2431–2440.

13

Lv, C. X.; Xu, W. J.; Liu, H. L.; Zhang, L. X.; Chen, S.; Yang, X. F.; Xu, X. J.; Yang, D. J. 3D sulfur and nitrogen codoped carbon nanofiber aerogels with optimized electronic structure and enlarged interlayer spacing boost potassium-ion storage. Small 2019, 15, 1900816.

14

Ma, X. X.; Chen, X.; Bai, Y. K.; Shen, X.; Zhang, R.; Zhang, Q. The defect chemistry of carbon frameworks for regulating the lithium nucleation and growth behaviors in lithium metal anodes. Small 2021, 17, 2007142.

15

Wang, Z. X.; Sun, Z. H.; Li, J.; Shi, Y.; Sun, C. G.; An, B. G.; Cheng, H. M.; Li, F. Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chem. Soc. Rev. 2021, 50, 3178–3210.

16

Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.

17

Li, Y. C.; Hu, R. M.; Chen, Z. B.; Wan, X.; Shang, J. X.; Wang, F. H.; Shui, J. L. Effect of Zn atom in Fe-N-C catalysts for electro-catalytic reactions: Theoretical considerations. Nano Res. 2021, 14, 611–619.

18

Xu, Y. S.; Zhu, L. P.; Cui, X. X.; Zhao, M. Y.; Li, Y. L.; Chen, L. L.; Jiang, W. C.; Jiang, T.; Yang, S. G.; Wang, Y. Graphitizing N-doped mesoporous carbon nanospheres via facile single atom iron growth for highly efficient oxygen reduction reaction. Nano Res. 2020, 13, 752–758.

19

Ma, L. B.; Zhu, G. Y.; Wang, D. D.; Chen, H. X.; Lv, Y. H.; Zhang, Y. Z.; He, X. J.; Pang, H. Emerging metal single atoms in electrocatalysts and batteries. Adv. Funct. Mater. 2020, 30, 2003870.

20

Geng, H. B.; Cheng, M.; Wang, B.; Yang, Y.; Zhang, Y. F.; Li, C. C. Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv. Funct. Mater. 2020, 30, 1907684.

21

Zhang, L.; Liang, P.; Shu, H. B.; Man, X. L.; Du, X. Q.; Chao, D. L.; Liu, Z. G.; Sun, Y. P.; Wan, H. Z.; Wang, H. Design rules of heteroatom-doped graphene to achieve high performance lithium-sulfur batteries: Both strong anchoring and catalysing based on first principles calculation. J. Colloid Interface Sci. 2018, 529, 426–431.

22

Lu, Y.; Shin, K. H.; Yu, Y. F.; Hu, Y. Z.; Liang, J. N.; Chen, K.; Yuan, H. C.; Park, H. S.; Wang, D. L. Multiple active sites carbonaceous anodes for Na+ storage: Synthesis, electrochemical properties and reaction mechanism analysis. Adv. Funct. Mater. 2021, 31, 2007247.

23

Wang, F. Y.; Miao, Z. C.; Mu, J. L.; Zhao, Y. Z.; Liang, M. F.; Meng, J.; Wu, X. Z.; Zhou, P. F.; Zhao, J. P.; Zhuo, S. P. et al. A Ni nanoparticles encapsulated in N-doped carbon catalyst for efficient electroreduction CO2: Identification of active sites for adsorption and activation of CO2 molecules. Chem. Eng. J. 2022, 428, 131323.

24

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

25

Hu, X.; Wang, G. X.; Li, J. W.; Huang, J. H.; Liu, Y. J.; Zhong, G. B.; Yuan, J.; Zhan, H. B.; Wen, Z. H. Significant contribution of single atomic Mn implanted in carbon nanosheets to high-performance sodium-ion hybrid capacitors. Energy Environ. Sci. 2021, 14, 4564–4573.

26

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

27

Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

28

Qin, H. Q.; Chao, H. X.; Zhang, M. D.; Huang, Y. C.; Liu, H. Y.; Cheng, J. K.; Cao, L. F.; Xu, Q.; Guan, L.; Teng, X. L. et al. Precious potential regulation of carbon cathode enabling high-performance lithium-ion capacitors. Carbon 2021, 180, 110–117.

29

Khan, K.; Yan, X. X.; Yu, Q. M.; Bae, S. H.; White, J. J.; Liu, J. X.; Liu, T. C.; Sun, C. J.; Kim, J.; Cheng, H. M. et al. Stone-wales defect-rich carbon-supported dual-metal single atom sites for Zn-air batteries. Nano Energy 2021, 90, 106488.

30

Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

31

Zhang, Z. P.; Sun, J. T.; Wang, F.; Dai, L. M. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem., Int. Ed. 2018, 57, 9038–9043.

32

Ren, H.; Wang, Y.; Yang, Y.; Tang, X.; Peng, Y. Q.; Peng, H. Q.; Xiao, L.; Lu, J. T.; Abruña, H. D.; Zhuang, L. Fe/N/C nanotubes with atomic Fe sites: A highly active cathode catalyst for alkaline polymer electrolyte fuel cells. ACS Catal. 2017, 7, 6485–6492.

33

Gao, L. F.; Zhang, G. Q.; Cai, J.; Huang, L.; Zhou, J.; Zhang, L. N. Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage. Nano Res. 2020, 13, 1604–1613.

34

Zhuang, Z. L.; Liu, C.; Yan, Y. Y.; Ma, P. C.; Tan, D. Q. Zn-CxNy nanoparticle arrays derived from a metal–organic framework for ultralow-voltage hysteresis and stable Li metal anodes. J. Mater. Chem. A 2021, 9, 27095–27101.

35

Wang, T. T.; Sang, X. H.; Zheng, W. Z.; Yang, B.; Yao, S. Y.; Lei, C. J.; Li, Z. J.; He, Q. G.; Lu, J. G.; Lei, L. C. et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO2 batteries. Adv. Mater. 2020, 32, 2002430.

36

Ni, W. P.; Liu, Z. X.; Zhang, Y.; Ma, C.; Deng, H. Q.; Zhang, S. G.; Wang, S. Y. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe-N4 site. Adv. Mater. 2021, 33, 2003238.

37

Xiao, M. L.; Xing, Z. H.; Jin, Z.; Liu, C. P.; Ge, J. J.; Zhu, J. B.; Wang, Y.; Zhao, X.; Chen, Z. W. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. Adv. Mater. 2020, 32, 2004900.

38

Yu, D. S.; Ma, Y. C.; Hu, F.; Lin, C. C.; Li, L. L.; Chen, H. Y.; Han, X. P.; Peng, S. J. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy Mater. 2021, 11, 2101242.

39

Wang, X. S.; Pan, Y. Y.; Ning, H.; Wang, H. M.; Guo, D. L.; Wang, W. H.; Yang, Z. X.; Zhao, Q. S.; Zhang, B. X.; Zheng, L. R. et al. Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction. Appl. Catal. B:Environ. 2020, 266, 118630.

40

Liu, F.; Meng, J. S.; Jiang, G. P.; Li, J. T.; Wang, H.; Xiao, Z. T.; Yu, R. H.; Mai, L. Q.; Wu, J. S. Coordination engineering of metal single atom on carbon for enhanced and robust potassium storage. Matter 2021, 4, 4006–4021.

41

Chen, J. T.; Yang, B. J.; Hou, H. J.; Li, H. X.; Liu, L.; Zhang, L.; Yan, X. B. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 2019, 9, 1803894.

42

Chao, H. X.; Qin, H. Q.; Zhang, M. D.; Huang, Y. C.; Cao, L. F.; Guo, H. L.; Wang, K.; Teng, X. L.; Cheng, J. K.; Lu, Y. K. et al. Boosting the pseudocapacitive and high mass-loaded lithium/sodium storage through bonding polyoxometalate nanoparticles on MXene nanosheets. Adv. Funct. Mater. 2021, 31, 2007636.

43

Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

44

Hu, X.; Liu, Y. J.; Chen, J. X.; Yi, L. C.; Zhan, H. B.; Wen, Z. H. Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 2019, 9, 1901533.

45

Zou, K. Y.; Cai, P.; Cao, X. Y.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Carbon materials for high-performance lithium-ion capacitor. Curr. Opin. Electrochem. 2020, 21, 31–39.

46

Wang, F.; Feng, T.; Jin, X. J.; Zhou, Y. L.; Xu, Y. J.; Gao, Y. H.; Li, H. S.; Lei, J. F. Atomic Co/Ni active sites assisted MOF-derived rich nitrogen-doped carbon hollow nanocages for enhanced lithium storage. Chem.—Eng. J. 2021, 420, 127583.

47

Wang, J.; Zhang, J.; Cheng, S.; Yang, J.; Xi, Y. L.; Hou, X. G.; Xiao, Q. B.; Lin, H. Z. Long-life dendrite-free lithium metal electrode achieved by constructing a single metal atom anchored in a diffusion modulator layer. Nano Lett. 2021, 21, 3245–3253.

48

Lee, J. H.; Kang, S. G.; Kim, I. T.; Kwon, S.; Lee, I.; Lee, S. G. Adsorption mechanisms of lithium oxides (LixO2) on N-doped graphene: A density functional theory study with implications for lithium-air batteries. Theor. Chem. Acc. 2016, 135, 50.

49

Jin, L. M.; Shen, C.; Shellikeri, A.; Wu, Q.; Zheng, J. S.; Andrei, P.; Zhang, J. G.; Zheng, J. P. Progress and perspectives on pre-lithiation technologies for lithium ion capacitors. Energy Environ. Sci. 2020, 13, 2341–2362.

50

Zhang, J.; Wu, H. Z.; Wang, J.; Shi, J. L.; Shi, Z. Q. Pre-lithiation design and lithium ion intercalation plateaus utilization of mesocarbon microbeads anode for lithium-ion capacitors. Electrochim. Acta 2015, 182, 156–164.

Nano Research
Pages 6176-6183
Cite this article:
Xu Q, Li Y, Wu C, et al. Kinetically accelerated and high-mass loaded lithium storage enabled by atomic iron embedded carbon nanofibers. Nano Research, 2022, 15(7): 6176-6183. https://doi.org/10.1007/s12274-022-4266-x
Topics:

1086

Views

14

Crossref

15

Web of Science

15

Scopus

2

CSCD

Altmetrics

Received: 10 January 2022
Revised: 18 February 2022
Accepted: 21 February 2022
Published: 01 April 2022
© Tsinghua University Press 2022
Return