AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A green and efficient strategy facilitates continuous solar-induced steam generation based on tea-assisted synthesis of gold nanoflowers

Guoshuai Zhu1,§Gaoxing Jing1,§Guorong Xu3Qiang Li3Ruijia Huang1Feng Li1Haoxuan Li2( )Dong Wang4( )Wenwen Chen1( )Ben Zhong Tang5
Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518055, China
Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (MNR), Tianjin 300192, China
Centre for AIE Research, College of Material Science and Engineering, Shenzhen University, Shenzhen 518055, China
School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen 518172, China

§ Guoshuai Zhu and Gaoxing Jing contributed equally to this work.

Show Author Information

Graphical Abstract

A green approach to prepare metal-based solar absorbers and a straightforward method to harvest CNC-PU-Au (CNC = cellulose nanocrystal and PU = polyurethane) evaporator are innovated for efficient solar steam generation. The evaporator is able to strongly self-pump water, efficiently convert sunlight into heat, and consequently promote the interfacial solar water evaporation, making it promising in seawater desalination, as well as solute enrichment and industrial separation.

Abstract

Developing a highly efficient system for solar steam generation (SSG) using a straightforward and eco-friendly method to harvest freshwater is fascinating but challenging. Here, we stir the mixture of brewed tea and HAuCl4 to prepare Au nanoflowers, possessing broad wavelength light absorption and excellent photothermal effects. After freeze-drying the mixture of Au nanoflowers, cellulose nanocrystals (CNCs), and aqueous polyurethane (PU) emulsion, we obtain three-dimensional (3D) porous structures (CNC-PU-Au) for SSG. The whole process does not involve any sophisticated procedure or produce detrimental by-products. The evaporation rates are 2.24 kg·m−2·h−1 for pure water and 2.18 kg·m−2·h−1 for seawater using CNC-PU-Au under one sun. The solar energy conversion efficiency is up to 90.92% under one sun illumination. Besides, CNC-PU-Au shows self-driven salt resistance and durability. In outdoors application for seawater desalination, the maximum evaporation rate can maintain at 2.19 kg·m−2·h−1 in spring and 3.42 kg·m−2·h−1 in summer. These unique features promise the utility of CNC-PU-Au in the eco-friendly water treatment industry.

Electronic Supplementary Material

Video
12274_2022_4269_MOESM2_ESM.mp4
12274_2022_4269_MOESM3_ESM.mp4
12274_2022_4269_MOESM4_ESM.mp4
12274_2022_4269_MOESM5_ESM.mp4
Download File(s)
12274_2022_4269_MOESM1_ESM.pdf (1.4 MB)

References

1

Bernauer, T.; Böhmelt, T. International conflict and cooperation over freshwater resources. Nat. Sustain. 2020, 3, 350–356.

2

Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041.

3

Service, R. F. Desalination freshens up. Science 2006, 313, 1088–1090.

4
Engineering ToolBox, (2010). Water-Heat of Vaporization [online]. https://www.engineeringtoolbox.com/water-properties-d_1573.html (accessed Mar 31, 2022).
5

Blanco, J.; Malato, S.; Fernández-Ibañez, P.; Alarcón, D.; Gernjak, W.; Maldonado, M. I. Review of feasible solar energy applications to water processes. Renew. Sust. Energy Rev. 2009, 13, 1437–1445.

6

Sahu, B. K. A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries. Renew. Sust. Energy Rev. 2015, 43, 621–634.

7

Ohmura, A.; Wild, M. Is the hydrological cycle accelerating? Science 2002, 298, 1345–1346.

8

Zhao, F.; Guo, Y. H.; Zhou, X. Y.; Shi, W.; Yu, G. H. Materials for solar-powered water evaporation. Nat. Rev. Mater. 2020, 5, 388–401.

9

Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2TX MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

10

Hou, Y. Q.; Wang, M.; Chen, X. Y.; Hou, X. Continuous water-water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination. Nano Res. 2021, 14, 2171–2178.

11

Zhao, L. Y.; Wang, L.; Shi, J. D.; Hou, X. Y.; Wang, Q.; Zhang, Y.; Wang, Y.; Bai, N. N.; Yang, J. L.; Zhang, J. M. et al. Shape-programmable interfacial solar evaporator with salt-precipitation monitoring function. ACS Nano 2021, 15, 5752–5761.

12

Liu, H. W.; Chen, C. J.; Wen, H.; Guo, R. X.; Williams, N. A.; Wang, B. D.; Chen, F. J.; Hu, L. B. Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. J. Mater. Chem. A 2018, 6, 18839–18846.

13

Ying, P. J.; Li, M.; Yu, F. L.; Geng, Y.; Zhang, L. Y.; He, J. J.; Zheng, Y. J.; Chen, R. Band gap engineering in an efficient solar-driven interfacial evaporation system. ACS Appl. Mater. Interfaces 2020, 12, 32880–32887.

14

Li, H. X.; Zhu, W.; Li, M.; Li, Y.; Kwok, R. T. K.; Lam, J. W. Y.; Wang, L.; Wang, D.; Tang, B. Z. Side area-assisted 3D evaporator with antibiofouling function for ultra-efficient solar steam generation. Adv. Mater. 2021, 33, 2102258.

15

Li, H. X.; Wen, H. F.; Li, J.; Huang, J. C.; Wang, D.; Tang, B. Z. Doping AIE photothermal molecule into all-fiber aerogel with self-pumping water function for efficiency solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 26033–26040.

16

Li, H. X.; Wen, H. F.; Zhang, Z. J.; Song, N.; Kwok, R. T. K.; Lam, J. W. Y.; Wang, L.; Wang, D.; Tang, B. Z. Reverse thinking of the aggregation-induced emission principle: Amplifying molecular motions to boost photothermal efficiency of nanofibers. Angew. Chem., Int. Ed. 2020, 59, 20371–20375.

17

Wang, M. M.; Zhang, J.; Wang, P.; Li, C. P.; Xu, X. L.; Jin, Y. D. Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Res. 2018, 11, 3854–3863.

18

Li, X. D.; Wang, D. Y.; Zhang, Y.; Liu, L. T.; Wang, W. S. Surface-ligand protected reduction on plasmonic tuning of one-dimensional MoO3-x nanobelts for solar steam generation. Nano Res. 2020, 13, 3025–3032.

19

He, S. L.; Zhu, G. S.; Sun, Z. C.; Wang, J. D.; Hui, P.; Zhao, P. H.; Chen, W. W.; Jiang, X. Y. 2D AuPd alloy nanosheets: One-step synthesis as imaging-guided photonic nano-antibiotics. Nanoscale Adv. 2020, 2, 3550–3560.

20

Zhong, Y.; Ma, S.; Chen, K.; Wang, P. F.; Qiu, Y. H.; Liang, S.; Zhou, L.; Chen, Y. W.; Wang, Q. Q. Controlled growth of plasmonic heterostructures and their applications. Sci. China Mater. 2020, 63, 1398–1417.

21

Shin, D.; Kang, G. M.; Gupta, P.; Behera, S.; Lee, H.; Urbas, A. M.; Park, W.; Kim, K. Thermoplasmonic and photothermal metamaterials for solar energy applications. Adv. Opt. Mater. 2018, 6, 1800317.

22

Zhou, L.; Tan, Y. L.; Ji, D. X.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q. Q.; Yu, Z. F.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227.

23

Li, Y. P.; Fan, J.; Wang, R.; Shou, W.; Wang, L.; Liu, Y. 3D tree-shaped hierarchical flax fabric for highly efficient solar steam generation. J. Mater. Chem. A 2021, 9, 2248–2258.

24

Chen, T. J.; Wu, Z. Z.; Liu, Z. Y.; Aladejana, J. T.; Wang, X. D.; Niu, M.; Wei, Q. H.; Xie, Y. Q. Hierarchical porous aluminophosphate-treated wood for high-efficiency solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 19511–19518.

25

Sun, Z. Z.; Li, W. Z.; Song, W. L.; Zhang, L. C.; Wang, Z. K. A high-efficiency solar desalination evaporator composite of corn stalk, Mcnts and TiO2: Ultra-fast capillary water moisture transportation and porous bio-tissue multi-layer filtration. J. Mater. Chem. A 2020, 8, 349–357.

26

Xu, N.; Hu, X. Z.; Xu, W. C.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 2017, 29, 1606762.

27

Boott, C. E.; Tran, A.; Hamad, W. Y.; MacLachlan, M. J. Cellulose nanocrystal elastomers with reversible visible color. Angew. Chem., Int. Ed. 2020, 59, 226–231.

28

Kontturi, E.; Laaksonen, P.; Linder, M. B.; Nonappa; Gröschel, A. H.; Rojas, O. J.; Ikkala, O. Advanced materials through assembly of nanocelluloses. Adv. Mater. 2018, 30, 1703779.

29

Zhao, D. W.; Zhu, Y.; Cheng, W. K.; Chen, W. S.; Wu, Y. Q.; Yu, H. P. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 2021, 33, 2000619.

30

De France, K.; Zeng, Z. H.; Wu, T. T.; Nyström, G. Functional materials from nanocellulose: Utilizing structure-property relationships in bottom-up fabrication. Adv. Mater. 2021, 33, 2000657.

31

Jia, Y. X.; Guo, Y. M.; Wang, S. W.; Chen, W. W.; Zhang, J. J.; Zheng, W. S.; Jiang, X. Y. Nanocrystalline cellulose mediated seed-growth for ultra-robust colorimetric detection of hydrogen sulfide. Nanoscale 2017, 9, 9811–9817.

32

Harbowy, M. E.; Balentine, D. A.; Davies, A. P.; Cai, Y. Tea chemistry. Crit. Rev. Plant Sci. 1997, 16, 415–480.

33

Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

34
World Health Organization. Guidelines for drinking-water quality: fourth edition incorporating the first addendum; WHO: Genève, 2017. https://www.who.int/publications/i/item/9789241549950 (accessed Mar 31, 2022).
Nano Research
Pages 6705-6712
Cite this article:
Zhu G, Jing G, Xu G, et al. A green and efficient strategy facilitates continuous solar-induced steam generation based on tea-assisted synthesis of gold nanoflowers. Nano Research, 2022, 15(7): 6705-6712. https://doi.org/10.1007/s12274-022-4269-7
Topics:

1081

Views

9

Crossref

10

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 13 January 2022
Revised: 22 February 2022
Accepted: 22 February 2022
Published: 20 April 2022
© Tsinghua University Press 2022
Return