AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction

Huoliang GuJing WuLiming Zhang( )
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
Show Author Information

Graphical Abstract

In this review, we emphasized the current efforts on understanding the structure–function correlation of single-atom catalysts (SACs) for electrochemical CO2 reduction, and summarized the customized engineering strategies for creating highly efficient SACs electrocatalysts.

Abstract

Electrochemical CO2 reduction (CO2R) represents a sustainable way to store intermittent renewable energies and produce carbon-neutral fuels, yet the energy efficiency remains a huge bottleneck owning to its sluggish kinetics and complex reaction pathways. Highly active, selective, and robust electrocatalysts are strongly demanded to accelerate CO2 conversion and deploy this technology to practical applications. In this review, we focus on single-atom catalysts (SACs), a unique category of electrocatalysts with atomically dispersed metal active sites, which have shown distinctive performances in CO2R and offer an ideal platform for in-depth mechanistic studies at the atomic level. Despite various SACs with attractive CO2R performances have been reported, the relationship between electronic/geometric structure of SACs and the corresponding electrocatalytic performance still needs to be discussed with caution. Here we take a broad overview on the recent progress in understanding the structure–function correlation of SACs in CO2R, with the purpose of providing deep insights and guiding the future rational design of SACs. First, we provide the fundamental understandings of CO2R on SACs, following different reaction pathways. Then, we describe the progresses in the development of well-defined SACs and the mechanistic studies on the influences from particular structural parameters, such as first-shell and second-sphere coordination, conductive supports and interface with a secondary catalyst. Finally, some perspectives are highlighted on the path towards efficient CO2R on SACs.

References

[1]

Caldeira, K.; Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 2003, 425, 365.

[2]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[3]

Shakun, J. D.; Clark, P. U.; He, F.; Marcott, S. A.; Mix, A. C.; Liu, Z. Y.; Otto-Bliesner, B.; Schmittner, A.; Bard, E. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 2012, 484, 49–54.

[4]

Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 2013, 6, 3112–3135.

[5]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[6]

Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

[7]

Grim, R. G.; Huang, Z.; Guarnieri, M. T.; Ferrell III, J. R.; Tao, L.; Schaidle, J. A. Transforming the carbon economy: Challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energy Environ. Sci. 2020, 13, 472–494.

[8]

Kulkarni, A. P.; Hos, T.; Landau, M. V.; Fini, D.; Giddey, S.; Herskowitz, M. Techno-economic analysis of a sustainable process for converting CO2 and H2O to feedstock for fuels and chemicals. Sustainable Energy Fuels 2021, 5, 486–500.

[9]

Sharifian, R.; Wagterveld, R. M.; Digdaya, I. A.; Xiang, C.; Vermaas, D. A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 2021, 14, 781–814.

[10]

Chen, C.; Khosrowabadi Kotyk, J. F.; Sheehan, S. W. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 2018, 4, 2571–2586.

[11]

Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.

[12]

Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675.

[13]

Ringe, S.; Clark, E. L.; Resasco, J.; Walton, A.; Seger, B.; Bell, A. T.; Chan, K. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 2019, 12, 3001–3014.

[14]

Yoshio, H.; Katsuhei, K.; Shin, S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 1985, 14, 1695–1698.

[15]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[16]

Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 2009, 38, 89–99.

[17]

Franco, F.; Rettenmaier, C.; Jeon, H. S.; Roldan Cuenya, B. Transition metal-based catalysts for the electrochemical CO2 reduction: From atoms and molecules to nanostructured materials. Chem. Soc. Rev. 2020, 49, 6884–6946.

[18]

Raciti, D.; Wang, C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 2018, 3, 1545–1556.

[19]

Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

[20]

Zhang, S.; Fan, Q.; Xia, R.; Meyer, T. J. CO2 reduction: From homogeneous to heterogeneous electrocatalysis. Acc. Chem. Res. 2020, 53, 255–264.

[21]

Wang, Y. C.; Xu, L.; Zhan, L. S.; Yang, P. Y.; Tang, S. H.; Liu, M. J.; Zhao, X.; Xiong, Y.; Chen, Z. Y.; Lei, Y. P. Electron accumulation enables Bi efficient CO2 reduction for formate production to boost clean Zn-CO2 batteries. Nano Energy 2022, 92, 106780.

[22]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[23]

Zhang, L. L.; Ren, Y. J.; Liu, W. G.; Wang, A. Q.; Zhang, T. Single-atom catalyst: A rising star for green synthesis of fine chemicals. Natl. Sci. Rev. 2018, 5, 653–672.

[24]

Zhang, F. F.; Zhu, Y. L.; Lin, Q.; Zhang, L.; Zhang, X. W.; Wang, H. Y. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ. Sci. 2021, 14, 2954–3009.

[25]

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

[26]

Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

[27]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[28]

Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

[29]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[30]

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal−oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

[31]

Li, X. N.; Yang, X. F.; Zhang, J. M.; Huang, Y. Q.; Liu, B. In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 2019, 9, 2521–2531.

[32]

Ye, C. L.; Zhang, N. Q.; Wang, D. S.; Li, Y. F. Single atomic site catalysts: Synthesis, characterization, and applications. Chem. Commun. 2020, 56, 7687–7697.

[33]

Tian, S. B.; Gong, W. B.; Chen, W. X.; Lin, N.; Zhu, Y. Q.; Feng, Q. C.; Xu, Q.; Fu, Q.; Chen, C.; Luo, J. et al. Regulating the catalytic performance of single-atomic-site Ir catalyst for biomass conversion by metal-support interactions. ACS Catal. 2019, 9, 5223–5230.

[34]

Tian, S. B.; Wang, Z. Y.; Gong, W. B.; Chen, W. X.; Feng, Q. C.; Xu, Q.; Chen, C.; Chen, C.; Peng, Q.; Gu, L. et al. Temperature-controlled selectivity of hydrogenation and hydrodeoxygenation in the conversion of biomass molecule by the Ru1/mpg-C3N4 catalyst. J. Am. Chem. Soc. 2018, 140, 11161–11164.

[35]

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

[36]

Ye, X.; Yang, C. Y.; Pan, X. L.; Ma, J. G.; Zhang, Y. R.; Ren, Y. J.; Liu, X. Y.; Li, L.; Huang, Y. Q. Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst. J. Am. Chem. Soc. 2020, 142, 19001–19005.

[37]

Liu, H.; Li, X. X.; Ma, Z. H.; Sun, M. Z.; Li, M. G.; Zhang, Z. Y.; Zhang, L.; Tang, Z. B.; Yao, Y.; Huang, B. L. et al. Atomically dispersed Cu catalyst for efficient chemoselective hydrogenation reaction. Nano Lett. 2021, 21, 10284–10291.

[38]

Liu, Y.; Liu, J. C.; Li, T. H.; Duan, Z. H.; Zhang, T. Y.; Yan, M.; Li, W. L.; Xiao, H.; Wang, Y. G.; Chang, C. R. et al. Unravelling the enigma of nonoxidative conversion of methane on iron single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 18586–18590.

[39]

Sun, X. H.; Olivos-Suarez, A. I.; Osadchii, D.; Romero, M. J. V.; Kapteijn, F.; Gascon, J. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes. J. Catal. 2018, 357, 20–28.

[40]

Yang, J. R.; Zeng, D. Q.; Zhang, Q. G.; Cui, R. F.; Hassan, M.; Dong, L. Q.; Li, J.; He, Y. L. Single Mn atom anchored on N-doped porous carbon as highly efficient Fenton-like catalyst for the degradation of organic contaminants. Appl. Catal. B:Environ. 2020, 279, 119363.

[41]

Zuo, Z. J.; Liu, S. Z.; Wang, Z. C.; Liu, C.; Huang, W.; Huang, J.; Liu, P. Dry reforming of methane on single-site Ni/MgO catalysts: Importance of site confinement. ACS Catal. 2018, 8, 9821–9835.

[42]

Fu, J. H.; Dong, J. H.; Si, R.; Sun, K. J.; Zhang, J. Y.; Li, M. R.; Yu, N. N.; Zhang, B. S.; Humphrey, M. G.; Fu, Q. et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS Catal. 2021, 11, 1952–1961.

[43]

Gu, X. K.; Qiao, B. T.; Huang, C. Q.; Ding, W. C.; Sun, K. J.; Zhan, E. S.; Zhang, T.; Liu, J. Y.; Li, W. X. Supported single Pt1/Au1 atoms for methanol steam reforming. ACS Catal. 2014, 4, 3886–3890.

[44]

Sun, G. D.; Zhao, Z. J.; Mu, R. T.; Zha, S. J.; Li, L. L.; Chen, S.; Zang, K. T.; Luo, J.; Li, Z. L.; Purdy, S. C. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 9, 4454.

[45]

Tang, Y.; Wei, Y. C.; Wang, Z. Y.; Zhang, S. R.; Li, Y. T.; Nguyen, L.; Li, Y. X.; Zhou, Y.; Shen, W. J.; Tao, F. F. et al. Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4. J. Am. Chem. Soc. 2019, 141, 7283–7293.

[46]

Zhou, P.; Hou, X. G.; Chao, Y. G.; Yang, W. X.; Zhang, W. Y.; Mu, Z. J.; Lai, J. P.; Lv, F.; Yang, K.; Liu, Y. X. et al. Synergetic interaction between neighboring platinum and ruthenium monomers boosts CO oxidation. Chem. Sci. 2019, 10, 5898–5905.

[47]

Chen, Y.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[48]

Lu, B. Z.; Liu, Q. M.; Chen, S. W. Electrocatalysis of single-atom sites: Impacts of atomic coordination. ACS Catal. 2020, 10, 7584–7618.

[49]

Nguyen, T. N.; Salehi, M.; Van Le, Q.; Seifitokaldani, A.; Dinh, C. T. Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts. ACS Catal. 2020, 10, 10068–10095.

[50]

Ou, H. H.; Wang, D. S.; Li, Y. D. How to select effective electrocatalysts: Nano or single atom? Nano Select 2021, 2, 492–511.

[51]

Peng, Y.; Lu, B. Z.; Chen, S. W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30, 1801995.

[52]

Wang, Y. X.; Su, H. Y.; He, Y. H.; Li, L. G.; Zhu, S. Q.; Shen, H.; Xie, P. F.; Fu, X. B.; Zhou, G. Y.; Feng, C. et al. Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 2020, 120, 12217–12314.

[53]

Zhang, H. B.; Cheng, W. R.; Luan, D. Y.; Lou, X. W. Atomically dispersed reactive centers for electrocatalytic CO2 reduction and water splitting. Angew. Chem., Int. Ed. 2021, 60, 13177–13196.

[54]

Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

[55]

Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890–2923.

[56]
Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, https://doi.org/10.1016/j.apmate.2021.10.004.
[57]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[58]

Wang, Y. C.; Liu, Y.; Liu, W.; Wu, J.; Li, Q.; Feng, Q. G.; Chen, Z. Y.; Xiong, X.; Wang, D. S.; Lei, Y. P. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy Environ. Sci. 2020, 13, 4609–4624.

[59]

Zhou, D. N.; Li, X. Y.; Shang, H. S.; Qin, F. J.; Chen, W. X. Atomic regulation of metal-organic framework derived carbon-based single-atom catalysts for the electrochemical CO2 reduction reaction. J. Mater. Chem. A 2021, 9, 23382–23418.

[60]

Lu, X. L.; Rong, X.; Zhang, C.; Lu, T. B. Carbon-based single-atom catalysts for CO2 electroreduction: Progress and optimization strategies. J. Mater. Chem. A 2020, 8, 10695–10708.

[61]

Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

[62]

Wang, Y. F.; Chen, Z.; Han, P.; Du, Y. H.; Gu, Z. X.; Xu, X.; Zheng, G. F. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 2018, 8, 7113–7119.

[63]

Zhang, Y.; Dong, L.-Z.; Li, S.; Huang, X.; Chang, J.-N.; Wang, J.-H.; Zhou, J.; Li, S.-L.; Lan, Y.-Q. Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nature Commun. 2021, 12, 6390.

[64]

Wang, G. X.; Chen, J. X.; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.; Tu, C. Y.; Hou, Y.; Wen, Z. H.; Dai, L. M. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993–5061.

[65]

Zhao, K.; Quan, X. Carbon-based materials for electrochemical reduction of CO2 to C2+ oxygenates: Recent progress and remaining challenges. ACS Catal. 2021, 11, 2076–2097.

[66]

Landers, A. T.; Fields, M.; Torelli, D. A.; Xiao, J. P.; Hellstern, T. R.; Francis, S. A.; Tsai, C.; Kibsgaard, J.; Lewis, N. S.; Chan, K. et al. The predominance of hydrogen evolution on transition metal sulfides and phosphides under CO2 reduction conditions: An experimental and theoretical study. ACS Energy Lett. 2018, 3, 1450–1457.

[67]

Goyal, A.; Marcandalli, G.; Mints, V. A.; Koper, M. T. M. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. J. Am. Chem. Soc. 2020, 142, 4154–4161.

[68]

Kimura, K. W.; Casebolt, R.; Cimada DaSilva, J.; Kauffman, E.; Kim, J.; Dunbar, T. A.; Pollock, C. J.; Suntivich, J.; Hanrath, T. Selective electrochemical CO2 reduction during pulsed potential stems from dynamic interface. ACS Catal. 2020, 10, 8632–8639.

[69]

Gattrell, M.; Gupta, N.; Co, A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 2006, 594, 1–19.

[70]

Baruch, M. F.; Pander III, J. E.; White, J. L.; Bocarsly, A. B. Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 2015, 5, 3148–3156.

[71]

Gao, D. F.; Zhou, H.; Cai, F.; Wang, D. N.; Hu, Y. F.; Jiang, B.; Cai, W. B.; Chen, X. Q.; Si, R.; Yang, F. et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 2017, 10, 2181–2191.

[72]

Zhao, Y. R.; Chang, X. X.; Malkani, A. S.; Yang, X.; Thompson, L.; Jiao, F.; Xu, B. J. Speciation of Cu surfaces during the electrochemical CO reduction reaction. J. Am. Chem. Soc. 2020, 142, 9735–9743.

[73]

Surdhar, P. S.; Mezyk, S. P.; Armstrong, D. A. Reduction potential of the carboxyl radical anion in aqueous solutions. J. Phys. Chem. 1989, 93, 3360–3363.

[74]

Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 2011, 334, 643–644.

[75]

Sun, Z. Y.; Ma, T.; Tao, H. C.; Fan, Q.; Han, B. X. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 2017, 3, 560–587.

[76]

Rosen, J.; Hutchings, G. S.; Lu, Q.; Rivera, S.; Zhou, Y.; Vlachos, D. G.; Jiao, F. Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal. 2015, 5, 4293–4299.

[77]

Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944.

[78]

Todorova, T. K.; Schreiber, M. W.; Fontecave, M. Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 2020, 10, 1754–1768.

[79]

Vijay, S.; Ju, W.; Brückner, S.; Tsang, S. C.; Strasser, P.; Chan, K. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 2021, 4, 1024–1031.

[80]

Smith, B. D.; Irish, D. E.; Kedzierzawski, P.; Augustynski, J. A surface enhanced roman scattering study of the intermediate and poisoning species formed during the electrochemical reduction of CO2 on copper. J. Electrochem. Soc. 1997, 144, 4288–4296.

[81]

Qin, X. P.; Zhu, S. Q.; Xiao, F.; Zhang, L. L.; Shao, M. H. Active sites on heterogeneous single-iron-atom electrocatalysts in CO2 reduction reaction. ACS Energy Lett. 2019, 4, 1778–1783.

[82]

Fan, Q.; Hou, P. F.; Choi, C.; Wu, T. S.; Hong, S.; Li, F.; Soo, Y. L.; Kang, P.; Jung, Y.; Sun, Z. Y. Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2. Adv. Energy Mater. 2020, 10, 1903068.

[83]
MeshitsukaS.IchikawaM.TamaruK. Electrocatalysis by metal phthalocyanines in the reduction of carbon dioxideJ. Chem. Soc., Chem. Commun.197415815910.1039/c39740000158 

Meshitsuka, S.; Ichikawa, M.; Tamaru, K. Electrocatalysis by metal phthalocyanines in the reduction of carbon dioxide. J. Chem. Soc., Chem. Commun. 1974, 158–159.

[84]

Kazuya, H.; Katsuhiro, T.; Hideo, S.; Shinobu, T. Electrocatalytic behavior of tetrasulfonated metal phthalocyanines in the reduction of carbon dioxide. Chem. Lett. 1977, 6, 1137–1140.

[85]

Katsuhiro, T.; Kazuya, H.; Hideo, S.; Shinobu, T. Electrocatalytic behavior of metal porphyrins in the reduction of carbon dioxide. Chem. Lett. 1979, 8, 305–308.

[86]

Fisher, B. J.; Eisenberg, R. Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt. J. Am. Chem. Soc. 1980, 102, 7361–7363.

[87]

Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213.

[88]

Chen, B. T.; Li, B. R.; Tian, Z. Q.; Liu, W. B.; Liu, W. P.; Sun, W. W.; Wang, K.; Chen, L.; Jiang, J. Z. Enhancement of mass transfer for facilitating industrial-level CO2 electroreduction on atomic Ni-N4 sites. Adv. Energy Mater. 2021, 11, 2102152.

[89]

Ni, W. P.; Liu, Z. X.; Zhang, Y.; Ma, C.; Deng, H. Q.; Zhang, S. G.; Wang, S. Y. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe-N4 site. Adv. Mater. 2021, 33, 2003238.

[90]

Li, X. G.; Xi, S. B.; Sun, L. B.; Dou, S.; Huang, Z. F.; Su, T.; Wang, X. Isolated FeN4 sites for efficient electrocatalytic CO2 reduction. Adv. Sci. 2020, 7, 2001545.

[91]

Grasemann, M.; Laurenczy, G. Formic acid as a hydrogen source-recent developments and future trends. Energy Environ. Sci. 2012, 5, 8171–8181.

[92]

Pan, Z. W. H.; Wang, K.; Ye, K. H.; Wang, Y.; Su, H. Y.; Hu, B. H.; Xiao, J.; Yu, T. W.; Wang, Y.; Song, S. Q. Intermediate adsorption states switch to selectively catalyze electrochemical CO2 reduction. ACS Catal. 2020, 10, 3871–3880.

[93]

Li, L.; Ozden, A.; Guo, S. Y.; Garcı́a de Arquer, F. P.; Wang, C. H.; Zhang, M. Z.; Zhang, J.; Jiang, H. Y.; Wang, W.; Dong, H. et al. Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat. Commun. 2021, 12, 5223.

[94]

Huang, P. C.; Cheng, M.; Zhang, H. H.; Zuo, M.; Xiao, C.; Xie, Y. Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene. Nano Energy 2019, 61, 428–434.

[95]

Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

[96]

Zu, X. L.; Li, X. D.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Yao, T.; Yan, W. S.; Gao, S.; Wang, C. M.; Wei, S. Q. et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites. Adv. Mater. 2019, 31, 1808135.

[97]

Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

[98]

Peterson, A. A.; Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 2012, 3, 251–258.

[99]

Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 2014, 136, 14107–14113.

[100]

Nie, X. W.; Esopi, M. R.; Janik, M. J.; Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps. Angew. Chem., Int. Ed. 2013, 52, 2459–2462.

[101]

Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5, 7050–7059.

[102]

Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.

[103]

Monteiro, M. C. O.; Dattila, F.; Hagedoorn, B.; García-Muelas, R.; López, N.; Koper, M. T. M. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 2021, 4, 654–662.

[104]

Cai, Y. M.; Fu, J. J.; Zhou, Y.; Chang, Y. C.; Min, Q. H.; Zhu, J. J.; Lin, Y. H.; Zhu, W. L. Insights on forming N, O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 2021, 12, 586.

[105]

Han, L. L.; Song, S. J.; Liu, M. J.; Yao, S. Y.; Liang, Z. X.; Cheng, H.; Ren, Z. H.; Liu, W.; Lin, R. Q.; Qi, G. C. et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567.

[106]

Yang, H. P.; Wu, Y.; Li, G. D.; Lin, Q.; Hu, Q.; Zhang, Q. L.; Liu, J. H.; He, C. X. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 2019, 141, 12717–12723.

[107]

Guan, A. X.; Chen, Z.; Quan, Y. L.; Peng, C.; Wang, Z. Q.; Sham, T. K.; Yang, C.; Ji, Y. L.; Qian, L. P.; Xu, X. et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 2020, 5, 1044–1053.

[108]

Zhao, K.; Nie, X. W.; Wang, H. Z.; Chen, S.; Quan, X.; Yu, H. T.; Choi, W.; Zhang, G. H.; Kim, B.; Chen, J. G. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 2020, 11, 2455.

[109]

Karapinar, D.; Huan, N. T.; Ranjbar Sahraie, N.; Li, J. K.; Wakerley, D.; Touati, N.; Zanna, S.; Taverna, D.; Galvão Tizei, L. H.; Zitolo, A. et al. Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: Selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem., Int. Ed. 2019, 58, 15098–15103.

[110]

Xu, H. P.; Rebollar, D.; He, H. Y.; Chong, L. N.; Liu, Y. Z.; Liu, C.; Sun, C. J.; Li, T.; Muntean, J. V.; Winans, R. E. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632.

[111]

Back, S.; Lim, J.; Kim, N. Y.; Kim, Y. H.; Jung, Y. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 2017, 8, 1090–1096.

[112]

Huan, T. N.; Ranjbar, N.; Rousse, G.; Sougrati, M.; Zitolo, A.; Mougel, V.; Jaouen, F.; Fontecave, M. Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: A structure-selectivity study. ACS Catal. 2017, 7, 1520–1525.

[113]

Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.

[114]

Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction. Catal. Today 2017, 288, 74–78.

[115]

Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.

[116]

Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Wang, Y.; Dong, J. C.; Wu, K. L.; Cheong, W. C.; Mao, J. J. et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1800396.

[117]

Zhang, H. B.; Yu, L.; Chen, T.; Zhou, W.; Lou, X. W. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1807086.

[118]

Shah, K.; Dai, R. Y.; Mateen, M.; Hassan, Z.; Zhuang, Z. W.; Liu, C. H.; Israr, M.; Cheong, W. C.; Hu, B. T.; Tu, R. Y. et al. Cobalt single atom incorporated in ruthenium oxide sphere: A robust bifunctional electrocatalyst for HER and OER. Angew. Chem., Int. Ed. 2022, 61, e202114951.

[119]

Varela, A. S.; Ju, W.; Bagger, A.; Franco, P.; Rossmeisl, J.; Strasser, P. Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 2019, 9, 7270–7284.

[120]

Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.

[121]

Han, N.; Wang, Y.; Ma, L.; Wen, J. G.; Li, J.; Zheng, H. C.; Nie, K. Q.; Wang, X. X.; Zhao, F. P.; Li, Y. G. et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 2017, 3, 652–664.

[122]

Lin, L.; Li, H. B.; Wang, Y.; Li, H. F.; Wei, P. F.; Nan, B.; Si, R.; Wang, G. X.; Bao, X. H. Temperature-dependent CO2 electroreduction over Fe-N-C and Ni-N-C single-atom catalysts. Angew. Chem., Int. Ed. 2021, 60, 26582–26586.

[123]

Wang, Y.; You, L. M.; Zhou, K. Origin of the N-coordinated single-atom Ni sites in heterogeneous electrocatalysts for CO2 reduction reaction. Chem. Sci. 2021, 12, 14065–14073.

[124]

Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

[125]

Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

[126]

Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961–1965.

[127]

Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; Xiao, J. P.; Miao, S.; Xie, S. H.; Yang, F. et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 2018, 11, 1204–1210.

[128]

Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

[129]

Kim, H.; Shin, D.; Yang, W.; Won, D. H.; Oh, H. S.; Chung, M. W.; Jeong, D.; Kim, S. H.; Chae, K. H.; Ryu, J. Y. et al. Identification of single-atom Ni site active toward electrochemical CO2 conversion to CO. J. Am. Chem. Soc. 2021, 143, 925–933.

[130]

Hossain, D.; Huang, Y. F.; Yu, T. H.; Goddard III, W. A.; Luo, Z. T. Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics. Nat. Commun. 2020, 11, 2256.

[131]

Kramer, W. W.; McCrory, C. C. L. Polymer coordination promotes selective CO2 reduction by cobalt phthalocyanine. Chem. Sci. 2016, 7, 2506–2515.

[132]

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

[133]

Zhang, B. X.; Zhang, J. L.; Shi, J. B.; Tan, D. X.; Liu, L. F.; Zhang, F. Y.; Lu, C.; Su, Z. Z.; Tan, X. N.; Cheng, X. Y. et al. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 2019, 10, 2980.

[134]

Zee, D. Z.; Nippe, M.; King, A. E.; Chang, C. J.; Long, J. R. Tuning second coordination sphere interactions in polypyridyl-iron complexes to achieve selective electrocatalytic reduction of carbon dioxide to carbon monoxide. Inorg. Chem. 2020, 59, 5206–5217.

[135]

Nichols, A. W.; Hooe, S. L.; Kuehner, J. S.; Dickie, D. A.; Machan, C. W. Electrocatalytic CO2 reduction to formate with molecular Fe(III) complexes containing pendent proton relays. Inorg. Chem. 2020, 59, 5854–5864.

[136]

Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J. M. Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J. Am. Chem. Soc. 2016, 138, 16639–16644.

[137]

Tang, J. K.; Zhu, C. Y.; Jiang, T. W.; Wei, L.; Wang, H.; Yu, K.; Yang, C. L.; Zhang, Y. B.; Chen, C.; Li, Z. T. et al. Anion exchange-induced single-molecule dispersion of cobalt porphyrins in a cationic porous organic polymer for enhanced electrochemical CO2 reduction via secondary-coordination sphere interactions. J. Mater. Chem. A 2020, 8, 18677–18686.

[138]

Weng, Z.; Jiang, J. B.; Wu, Y. S.; Wu, Z. S.; Guo, X. T.; Materna, K. L.; Liu, W.; Batista, V. S.; Brudvig, G. W.; Wang, H. L. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 2016, 138, 8076–8079.

[139]

Wu, Y. S.; Jiang, Z.; Lu, X.; Liang, Y. Y.; Wang, H. L. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 2019, 575, 639–642.

[140]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[141]

Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

[142]

Zhang, X.; Wu, Z. S.; Zhang, X.; Li, L. W.; Li, Y. Y.; Xu, H. M.; Li, X. X.; Yu, X. L.; Zhang, Z. S.; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.

[143]

Liang, F. X.; Zhang, J.; Hu, Z. W.; Ma, C.; Ni, W. P.; Zhang, Y.; Zhang, S. G. Intrinsic defect-rich graphene coupled cobalt phthalocyanine for robust electrochemical reduction of carbon dioxide. ACS Appl. Mater. Interfaces 2021, 13, 25523–25532.

[144]

Zhang, C.; Li, Y. L. Graphdiyne based atomic catalyst: An emerging star for energy conversion. Chem. Res. Chin. Univ. 2021, 37, 1149–1157.

[145]

Liu, X.; Wang, Z. X.; Tian, Y.; Zhao, J. X. Graphdiyne-supported single iron atom: A promising electrocatalyst for carbon dioxide electroreduction into methane and ethanol. J. Phys. Chem. C 2020, 124, 3722–3730.

[146]

Gu, H. L.; Zhong, L. X.; Shi, G. S.; Li, J. Q.; Yu, K.; Li, J.; Zhang, S.; Zhu, C. Y.; Chen, S. H.; Yang, C. L. et al. Graphdiyne/graphene heterostructure: A universal 2D scaffold anchoring monodispersed transition-metal phthalocyanines for selective and durable CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 8679–8688.

[147]

Wang, J.; Huang, X.; Xi, S. B.; Xu, H.; Wang, X. Axial modification of cobalt complexes on heterogeneous surface with enhanced electron transfer for carbon dioxide reduction. Angew. Chem., Int. Ed. 2020, 59, 19162–19167.

[148]

Huang, N.; Lee, K. H.; Yue, Y.; Xu, X. Y.; Irle, S.; Jiang, Q. H.; Jiang, D. L. A stable and conductive metallophthalocyanine framework for electrocatalytic carbon dioxide reduction in water. Angew. Chem., Int. Ed. 2020, 59, 16587–16593.

[149]

Zhong, H. X.; Ghorbani-Asl, M.; Ly, K. H.; Zhang, J. C.; Ge, J.; Wang, M. C.; Liao, Z. Q.; Makarov, D.; Zschech, E.; Brunner, E. et al. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 2020, 11, 1409.

[150]

Wen, C. F.; Mao, F. X.; Liu, Y. W.; Zhang, X. Y.; Fu, H. Q.; Zheng, L. R.; Liu, P. F.; Yang, H. G. Nitrogen-stabilized low-valent Ni motifs for efficient CO2 electrocatalysis. ACS Catal. 2020, 10, 1086–1093.

[151]

Lin, L.; Liu, T. F.; Xiao, J. P.; Li, H. F.; Wei, P. F.; Gao, D. F.; Nan, B.; Si, R.; Wang, G. X.; Bao, X. H. Enhancing CO2 electroreduction to methane with a cobalt phthalocyanine and zinc-nitrogen-carbon tandem catalyst. Angew. Chem., Int. Ed. 2020, 59, 22408–22413.

[152]

Lin, L.; Li, H. B.; Yan, C. C.; Li, H. F.; Si, R.; Li, M. R.; Xiao, J. P.; Wang, G. X.; Bao, X. H. Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 2019, 31, 1903470.

[153]

Meng, D. L.; Zhang, M. D.; Si, D. H.; Mao, M. J.; Hou, Y.; Huang, Y. B.; Cao, R. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts. Angew. Chem., Int. Ed. 2021, 60, 25485–25492.

[154]

Li, F. W.; Li, Y. C.; Wang, Z. Y.; Li, J.; Nam, D. H.; Lum, Y. W.; Luo, M. C.; Wang, X.; Ozden, A.; Hung, S. F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat. Catal. 2020, 3, 75–82.

[155]

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

[156]

Zhang, H. C.; Chang, X. X.; Chen, J. G.; Goddard III, W. A.; Xu, B. J.; Cheng, M. J.; Lu, Q. Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat. Commun. 2019, 10, 3340.

[157]

Ren, D.; Ang, B. S. H.; Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 2016, 6, 8239–8247.

[158]

Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764–771.

[159]

Jouny, M.; Luc, W.; Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 2018, 1, 748–755.

[160]

Hou, Y.; Huang, Y. B.; Liang, Y. L.; Chai, G. L.; Yi, J. D.; Zhang, T.; Zang, K. T.; Luo, J.; Xu, R.; Lin, H. et al. Unraveling the reactivity and selectivity of atomically isolated metal-nitrogen sites anchored on porphyrinic triazine frameworks for electroreduction of CO2. CCS Chem. 2019, 1, 384–395.

[161]

Gao, D. F.; Liu, T. F.; Wang, G. X.; Bao, X. H. Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Lett. 2021, 6, 713–727.

[162]

Zou, Y. Q.; Wang, S. Y. An investigation of active sites for electrochemical CO2 reduction reactions: From in situ characterization to rational design. Adv. Sci. 2021, 8, 2003579.

[163]

Nguyen, T. N.; Dinh, C. T. Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem. Soc. Rev. 2020, 49, 7488–7504.

[164]

García de Arquer, F. P.; Dinh, C. T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani, A. R.; Nam, D. H.; Gabardo, C.; Seifitokaldani, A.; Wang, X. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A·cm−2. Science 2020, 367, 661–666.

[165]

Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487.

Nano Research
Pages 9747-9763
Cite this article:
Gu H, Wu J, Zhang L. Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction. Nano Research, 2022, 15(11): 9747-9763. https://doi.org/10.1007/s12274-022-4270-1
Topics:
Part of a topical collection:

3154

Views

27

Crossref

24

Web of Science

27

Scopus

1

CSCD

Altmetrics

Received: 19 January 2022
Revised: 21 February 2022
Accepted: 22 February 2022
Published: 29 April 2022
© Tsinghua University Press 2022
Return