AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Unraveling the triplet excited-state dynamics of Bi3+ in vacancy-ordered double perovskite Cs2SnCl6 nanocrystals

Mengyao Jin1,2Wei Zheng1,2,3( )Zhongliang Gong1Ping Huang1,2,3Renfu Li1,3Jin Xu1,3Xingwen Cheng1Wei Zhang1Xueyuan Chen1,2,3( )
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
College of Chemistry, Fuzhou University, Fuzhou 350116, China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
Show Author Information

Graphical Abstract

Strong evidence including the thermal-enhanced Jahn-Teller splitting of the excitation band and a remarkable transition of the photoluminescence (PL) lifetime from ms at 10 K to μs at 300 K were provided to unravel the triplet excited-state dynamics and the origin of the broadband blue PL of Cs2SnCl6:Bi3+ nanocrystals from the inter-configurational 3P0,11S0 transitions of Bi3+.

Abstract

Luminescent metal halides doped with ns2-metal ions such as 6s2-metal Bi3+ have aroused reviving interest owing to their outstanding optical properties; however, the origin of the photoluminescence (PL) remains controversial and unclear. Herein, we report a strategy for the controlled synthesis of Bi3+-doped vacancy-ordered double perovskite Cs2SnCl6 nanocrystals (NCs) and unravel the triplet excited-state dynamics of Bi3+ through temperature-dependent PL and ultrafast femtosecond transient absorption spectroscopies. Owing to the aliovalent Bi3+ doping in the spatially confined zero-dimensional (0D) structure of Cs2SnCl6, Bi3+ ions experience an enhancive Jahn-Teller distortion in the excited state, which results in intense broadband blue PL originating from the inter-configurational 3P0,11S0 transitions of Bi3+ at 450 nm, with a large Stokes shift and a quantum yield of 35.2%. Specifically, an unusual thermal-enhanced Jahn-Teller splitting of the excitation band and a remarkable transition of the PL lifetime from ms at 10 K to μs at 300 K were observed, as solid evidence for the isolated Bi3+ emission. These findings clarify the controversy about the PL origin in ns2-metal ion-doped lead-free luminescent metal halides, thereby paving the way for exploring their optoelectronic applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4277_MOESM1_ESM.pdf (1.2 MB)

References

1

Maughan, A. E.; Ganose, A. M.; Bordelon, M. M.; Miller, E. M.; Scanlon, D. O.; Neilson, J. R. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. J. Am. Chem. Soc. 2016, 138, 8453–8464.

2

Zhou, L.; Liao, J. F.; Huang, Z. G.; Wang, X. D.; Xu, Y. F.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. All-inorganic lead-free Cs2PdX6 (X = Br, I) perovskite nanocrystals with single unit cell thickness and high stability. ACS Energy Lett. 2018, 3, 2613–2619.

3

Chen, M.; Ju, M. G.; Carl, A. D.; Zong, Y. X.; Grimm, R. L.; Gu, J. J.; Zeng, X. C.; Zhou, Y. Y.; Padture, N. P. Cesium titanium(IV) bromide thin films based stable lead-free perovskite solar cells. Joule 2018, 2, 558–570.

4

Wang, X. D.; Huang, Y. H.; Liao, J. F.; Jiang, Y.; Zhou, L.; Zhang, X. Y.; Chen, H. Y.; Kuang, D. B. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 13434–13441.

5

Folgueras, M. C.; Louisia, S.; Jin, J. B.; Gao, M. Y.; Du, A.; Fakra, S. C.; Zhang, R.; Seeler, F.; Schierle-Arndt, K.; Yang, P. D. Ligand-free processable perovskite semiconductor ink. Nano Lett. 2021, 21, 8856–8862.

6

Vishnoi, P.; Zuo, J. L.; Cooley, J. A.; Kautzsch, L.; Gómez-Torres, A.; Murillo, J.; Fortier, S.; Wilson, S. D.; Seshadri, R.; Cheetham, A. K. Chemical control of spin-orbit coupling and charge transfer in vacancy-ordered ruthenium(IV) halide perovskites. Angew. Chem., Int. Ed. 2021, 60, 5184–5188.

7

Lee, B.; Stoumpos, C. C.; Zhou, N. J.; Hao, F.; Malliakas, C.; Yeh, C. Y.; Marks, T. J.; Kanatzidis, M. G.; Chang, R. P. H. Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. J. Am. Chem. Soc. 2014, 136, 15379–15385.

8

Shin, H.; Kim, B. M.; Jang, T.; Kim, K. M.; Roh, D. H.; Nam, J. S.; Kim, J. S.; Kim, U. Y.; Lee, B.; Pang, Y. et al. Surface state-mediated charge transfer of Cs2SnI6 and its application in dye-sensitized solar cells. Adv. Energy Mater. 2019, 9, 1803243.

9

Xuan, T. T.; Xie, R. J. Recent processes on light-emitting lead-free metal halide perovskites. Chem. Eng. J. 2020, 393, 124757.

10

Yin, H.; Chen, J. S.; Guan, P.; Zheng, D. Y.; Kong, Q. K.; Yang, S. Q.; Zhou, P. W.; Yang, B.; Pullerits, T.; Han, K. L. Controlling photoluminescence and photocatalysis activities in lead-free Cs2PtxSn1-xCl6 perovskites via ion substitution. Angew. Chem., Int. Ed. 2021, 60, 22693–22699.

11

Tang, H. D.; Xu, Y. Q.; Hu, X. B.; Hu, Q.; Chen, T.; Jiang, W. H.; Wang, L. J.; Jiang, W. Lead-free halide double perovskite nanocrystals for light-emitting applications: Strategies for boosting efficiency and stability. Adv. Sci. 2021, 8, 2004118.

12

Vázquez-Fernández, I.; Mariotti, S.; Hutter, O. S.; Birkett, M.; Veal, T. D.; Hobson, T. D. C.; Phillips, L. J.; Danos, L.; Nayak, P. K.; Snaith, H. J. et al. Vacancy-ordered double perovskite Cs2TeI6 thin films for optoelectronics. Chem. Mater. 2020, 32, 6676–6684.

13

Peng, H. P.; Xu, L. Y.; Sheng, Y. L.; Sun, W. M.; Yang, Y.; Deng, H. H.; Chen, W.; Liu, J. W. Highly conductive ligand-free Cs2PtBr6 perovskite nanocrystals with a narrow bandgap and efficient photoelectrochemical performance. Small 2021, 17, 2102149.

14

Zhao, P.; Su, J.; Guo, Y. J.; Wang, L.; Lin, Z. H.; Hao, Y.; Ouyang, X. P.; Chang, J. J. Cs2TiI6: A potential lead-free all-inorganic perovskite material for ultrahigh-performance photovoltaic cells and alpha-particle detection. Nano Res. 2022, 15, 2694–2705.

15

Saparov, B.; Sun, J. P.; Meng, W. W.; Xiao, Z. W.; Duan, H. S.; Gunawan, O.; Shin, D.; Hill, I. G.; Yan, Y. F.; Mitzi, D. B. Thin-film deposition and characterization of a sn-deficient perovskite derivative Cs2SnI6. Chem. Mater. 2016, 28, 2315–2322.

16

Maughan, A. E.; Ganose, A. M.; Scanlon, D. O.; Neilson, J. R. Perspectives and design principles of vacancy-ordered double perovskite halide semiconductors. Chem. Mater. 2019, 31, 1184–1195.

17

Han, X.; Liang, J.; Yang, J. H.; Soni, K.; Fang, Q. Y.; Wang, W. P.; Zhang, J.; Jia, S.; Martí, A. A.; Zhao, Y. et al. Lead-free double perovskite Cs2SnX6: Facile solution synthesis and excellent stability. Small 2019, 15, 1901650.

18

Li, M. Z.; Xia, Z. G. Recent progress of zero-dimensional luminescent metal halides. Chem. Soc. Rev. 2021, 50, 2626–2662.

19

Liu, S. P.; Yang, B.; Chen, J. S.; Zheng, D. Y.; Tang, Z.; Deng, W. Q.; Han, K. L. Colloidal synthesis and tunable multicolor emission of vacancy-ordered Cs2HfCl6 perovskite nanocrystals. Laser Photonics Rev. 2022, 16, 2100439.

20

Sun, S. Q.; Lu, M.; Gao, X. P.; Shi, Z. F.; Bai, X.; Yu, W. W.; Zhang, Y. 0D perovskites: Unique properties, synthesis, and their applications. Adv. Sci. 2021, 8, 2102689.

21

Tan, Z. F.; Chu, Y. M.; Chen, J. X.; Li, J. H.; Ji, G. Q.; Niu, G. D.; Gao, L.; Xiao, Z. W.; Tang, J. Lead-free perovskite variant solid solutions Cs2Sn1−xTexCl6: Bright luminescence and high anti-water stability. Adv. Mater. 2020, 32, 2002443.

22

Liu, Y.; Rong, X. M.; Li, M. Z.; Molokeev, M. S.; Zhao, J.; Xia, Z. G. Incorporating rare-earth terbium(III) ions into Cs2AgInCl6: Bi nanocrystals toward tunable photoluminescence. Angew. Chem., Int. Ed. 2020, 59, 11634–11640.

23

Arfin, H.; Kshirsagar, A. S.; Kaur, J.; Mondal, B.; Xia, Z. G.; Chakraborty, S.; Nag, A. ns2 electron (Bi3+ and Sb3+) doping in lead-free metal halide perovskite derivatives. Chem. Mater. 2020, 32, 10255–10267.

24

Dave, K.; Fang, M. H.; Bao, Z.; Fu, H. T.; Liu, R. S. Recent developments in lead-free double perovskites: Structure, doping, and applications. Chem. Asian J. 2020, 15, 242–252.

25

Zhou, B.; Liu, Z. X.; Fang, S. F.; Zhong, H. Z.; Tian, B. B.; Wang, Y.; Li, H. N.; Hu, H. L.; Shi, Y. M. Efficient white photoluminescence from self-trapped excitons in Sb3+/Bi3+-codoped Cs2NaInCl6 double perovskites with tunable dual-emission. ACS Energy Lett. 2021, 6, 3343–3351.

26

Su, B. B.; Li, M. Z.; Song, E. H.; Xia, Z. G. Sb3+-doping in cesium zinc halides single crystals enabling high-efficiency near-infrared emission. Adv. Funct. Mater. 2021, 31, 2105316.

27

Cheng, X. W.; Li, R. F.; Zheng, W.; Tu, D. T.; Shang, X. Y.; Gong, Z. L.; Xu, J.; Han, S. Y.; Chen, X. Y. Tailoring the broadband emission in all-inorganic lead-free 0D in-based halides through Sb3+ doping. Adv. Opt. Mater. 2021, 9, 2101975.

28

Chen, B.; Guo, Y.; Wang, Y.; Liu, Z.; Wei, Q.; Wang, S. X.; Rogach, A. L.; Xing, G. C.; Shi, P.; Wang, F. Multiexcitonic emission in zero-dimensional Cs2ZrCl6: Sb3+ perovskite crystals. J. Am. Chem. Soc. 2021, 143, 17599–17606.

29

Zhang, G. D.; Dang, P. P.; Xiao, H.; Lian, H. Z.; Liang, S.; Yang, L.; Cheng, Z. Y.; Li, G. G.; Lin, J. Antimony-doped lead-free zero-dimensional tin(IV)-based organic-inorganic metal halide hybrids with high photoluminescence quantum yield and remarkable stability. Adv. Opt. Mater. 2021, 9, 2101637.

30

Zeng, R. S.; Bai, K.; Wei, Q. L.; Chang, T.; Yan, J.; Ke, B.; Huang, J. L.; Wang, L. S.; Zhou, W. C.; Cao, S. et al. Boosting triplet self-trapped exciton emission in Te(IV)-doped Cs2SnCl6 perovskite variants. Nano Res. 2021, 14, 1551–1558.

31

Jing, Y. Y.; Liu, Y.; Zhao, J.; Xia, Z. G. Sb3+ doping-induced triplet self-trapped excitons emission in lead-free Cs2SnCl6 nanocrystals. J. Phys. Chem. Lett. 2019, 10, 7439–7444.

32

Sun, H. T.; Zhou, J. J.; Qiu, J. R. Recent advances in bismuth activated photonic materials. Prog. Mater. Sci. 2014, 64, 1–72.

33

Locardi, F.; Sartori, E.; Buha, J.; Zito, J.; Prato, M.; Pinchetti, V.; Zaffalon, M. L.; Ferretti, M.; Brovelli, S.; Infante, I. et al. Emissive Bi-doped double perovskite Cs2Ag1−xNaxInCl6 nanocrystals. ACS Energy Lett. 2019, 4, 1976–1982.

34

Xiong, P. X.; Li, Y. Y.; Peng, M. Y. Recent advances in super broad infrared luminescence bismuth-doped crystals. iScience 2020, 23, 101578.

35

Chen, X. Z.; Li, Y.; Huang, K.; Huang, L.; Tian, X. M.; Dong, H. F.; Kang, R.; Hu, Y. H.; Nie, J. M.; Qiu, J. R. et al. Trap energy upconversion-like near-infrared to near-infrared light rejuvenateable persistent luminescence. Adv. Mater. 2021, 33, 2008722.

36

Zhang, W.; Zheng, W.; Li, L. Y.; Huang, P.; Gong, Z. L.; Zhou, Z. W.; Sun, J. Y.; Yu, Y.; Chen, X. Y. Dual-band-tunable white-light Emission from Bi3+/Te4+ emitters in perovskite-derivative Cs2SnCl6 microcrystals. Angew. Chem., Int. Ed. 2022, 61, e202116085.

37

Tan, Z. F.; Li, J. H.; Zhang, C.; Li, Z.; Hu, Q. S.; Xiao, Z. W.; Kamiya, T.; Hosono, H.; Niu, G. D.; Lifshitz, E. et al. Highly efficient bule-emitting Bi-doped Cs2SnCl6 perovskite variant: Photoluminescence induced by impurity doping. Adv. Funct. Mater. 2020, 30, 2004738.

38

Liu, S. P.; Yang, B.; Chen, J. S.; Wei, D. H.; Zheng, D. Y.; Kong, Q. K.; Deng, W. Q.; Han, K. L. Efficient thermally activated delayed fluorescence from all-inorganic cesium zirconium halide perovskite nanocrystals. Angew. Chem., Int. Ed. 2020, 59, 21925–21929.

39

Xiong, G. T.; Yuan, L. F.; Jin, Y. H.; Wu, H. Y.; Li, Z. Z.; Qu, B. Y.; Ju, G. F.; Chen, L.; Yang, S. H.; Hu, Y. H. Aliovalent doping and surface grafting enable efficient and stable lead-free blue-emitting perovskite derivative. Adv. Opt. Mater. 2020, 8, 2000779.

40

Arfin, H.; Nag, A. Origin of luminescence in Sb3+- and Bi3+-doped Cs2SnCl6 perovskites: Excited state relaxation and spin-orbit coupling. J. Phys. Chem. Lett. 2021, 12, 10002–10008.

41

Liu, R. X.; Zhang, W. J.; Liu, W. J.; Li, G. J. Synthesis of a Bi3+-doped Cs2HfCl6 double perovskite with highly efficient blue light emission at room temperature. Inorg. Chem. 2021, 60, 10451–10458.

42

Liu, M. Z.; Duan, C. K.; Tanner, P. A.; Ma, C. G.; Yin, M. Rationalizing the photoluminescence of Bi3+ and Sb3+ in double perovskite halide crystals. J. Phys. Chem. C 2021, 125, 26670–26678.

43

Swart, H. C.; Kroon, R. E. Ultraviolet and visible luminescence from bismuth doped materials. Opt. Mater. :X 2019, 2, 100025.

44

Krasnikov, A.; Mihokova, E.; Nikl, M.; Zazubovich, S.; Zhydachevskyy, Y. Luminescence spectroscopy and origin of luminescence centers in Bi-doped materials. Crystals 2020, 10, 208.

45

Dang, P. P.; Liu, D. J.; Li, G. G.; Al Kheraif, A. A.; Lin, J. Recent advances in bismuth ion-doped phosphor materials: Structure design, tunable photoluminescence properties, and application in white LEDs. Adv. Opt. Mater. 2020, 8, 1901993.

46

Lou, B. B.; Wen, J.; Ning, L. X.; Yin, M.; Ma, C. G.; Duan, C. K. Understanding the defect levels and photoluminescence in a series of bismuth-doped perovskite oxides: First-principles study. Phys. Rev. B 2021, 104, 115101.

47

Pelle, F.; Jacquier, B.; Denis, J. P.; Blanzat, B. Optical properties of Cs2NaBiCl6. J. Lumin. 1978, 17, 61–72.

48

Wolfert, A.; Blasse, G. Luminescence of Bi3+-doped crystals of Cs2NaYBr6 and Cs2NaLaCl6. J. Solid State Chem. 1985, 59, 133–142.

49

Wei, J.; Zheng, W.; Huang, P.; Gong, Z. L.; Liu, Y.; Lu, S.; Li, Z.; Chen, X. Y. Direct photoinduced synthesis of lead halide perovskite nanocrystals and nanocomposites. Nano Today 2021, 39, 101179.

50

Zhang, C. G.; Zhang, M. R.; Zheng, W.; Wei, J. J.; Wang, S. T.; Huang, P.; Cheng, X. W.; Dai, T.; Chen, Z.; Chen, X. Y. A new class of luminescent nanoprobes based on main-group Sb3+ emitters. Nano Res. 2022, 15, 179–185.

51

Zhang, W.; Wei, J. J.; Gong, Z. L.; Huang, P.; Xu, J.; Li, R. F.; Yu, S. H.; Cheng, X. W.; Zheng, W.; Chen, X. Y. Unveiling the excited-state dynamics of Mn2+ in 0D Cs4PbCl6 perovskite nanocrystals. Adv. Sci. 2020, 7, 2002210.

52
Cheng, X. W.; Xie, Z.; Zheng, W.; Li, R. F.; Deng, Z. H.; Tu, D. T.; Shang, X. Y.; Xu, J.; Gong, Z. L.; Li, X. J. et al. Boosting the self-trapped exciton emission in alloyed Cs2(Ag/Na)InCl6 double perovskite via Cu+ doping. Adv. Sci., in press, https://doi.org/10.1002/advs.202103724.
53

Galkowski, K.; Mitioglu, A.; Miyata, A.; Plochocka, P.; Portugall, O.; Eperon, G. E.; Wang, J. T. W.; Stergiopoulos, T.; Stranks, S. D.; Snaith, H. J. et al. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 2016, 9, 962–970.

54

Chen, J. W.; Wang, J.; Xu, X. B.; Li, J. H.; Song, J. Z.; Lan, S.; Liu, S. N.; Cai, B.; Han, B. N.; Precht, J. T. et al. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photonics 2021, 15, 238–244.

55

Stadler, W.; Hofmann, D. M.; Alt, H. C.; Muschik, T.; Meyer, B. K.; Weigel, E.; Müller-Vogt, G.; Salk, M.; Rupp, E.; Benz, K. W. Optical investigations of defects in Cd1−xZnxTe. Phys. Rev. B 1995, 51, 10619–10630.

56

De Jong, M.; Seijo, L.; Meijerink, A.; Rabouw, F. T. Resolving the ambiguity in the relation between stokes shift and huang-rhys parameter. Phys. Chem. Chem. Phys. 2015, 17, 16959–16969.

57

Jacobs, P. W. M.; Oyama, K. Optical absorption of s2 configuration ions in alkali halide crystals: I. Lineshape of the A band in In+-doped crystals. J. Phys. C:Solid State Phys. 1975, 8, 851–864.

58

Oomen, E. W. J. L.; Smit, W. M. A.; Blasse, G. On the luminescence of Sb3+ in Cs2NaMCl6 (with M = Sc, Y, La): A model system for the study of trivalent s2 ions. J. Phys. C:Solid State Phys. 1986, 19, 3263–3272.

59

Donker, H.; Smit, W. M. A.; Blasse, G. On the luminescence of CaO: Sn2+. Phys. Status Solidi B 1988, 145, 333–342.

60

Donker, H.; Smit, W. M. A.; Blasse, G. On the luminescence of Te4+ in A2ZrCl6 (A = Cs, Rb) and A2ZrCl6 (A = Cs, Rb, K). J. Phys. Chem. Solids 1989, 50, 603–609.

61

Donker, H.; Van Schaik, W.; Smit, W. M. A.; Blasse, G. On the luminescence of selenium(IV) in A2ZrCl6 (A = Cs, Rb). Chem. Phys. Lett. 1989, 158, 509–514.

62

Vandersteen, A. C.; Vanhesteren, J. J. A.; Slok, A. P. Luminescence of the Bi3+ ion in compounds LiLnO2 and NaLnO2 (Ln = Sc, Y, La, Gd, Lu). J. Electrochem. Soc. 1981, 128, 1327–1333.

63

Jacobs, P. W. M. Alkali halide crystals containing impurity ions with the ns2 ground-state electronic configuration. J. Phys. Chem. Solids 1991, 52, 35–67.

64

Blasse, G.; Van der Steen, A. C. Luminescence characteristics of Bi3+-activated oxides. Solid State Commun. 1979, 31, 993–994.

65

Van Der Steen, A. C.; Dijcks, L. T. F. The luminescence properties of alkaline-earth oxides activated with 6s2 ions. Phys. Status Solidi B 1981, 104, 283–292.

Nano Research
Pages 6422-6429
Cite this article:
Jin M, Zheng W, Gong Z, et al. Unraveling the triplet excited-state dynamics of Bi3+ in vacancy-ordered double perovskite Cs2SnCl6 nanocrystals. Nano Research, 2022, 15(7): 6422-6429. https://doi.org/10.1007/s12274-022-4277-7
Topics:

979

Views

49

Crossref

46

Web of Science

47

Scopus

1

CSCD

Altmetrics

Received: 25 January 2022
Revised: 27 February 2022
Accepted: 27 February 2022
Published: 25 April 2022
© Tsinghua University Press 2022
Return