AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Improved anticorrosion performance of mixed valence Mn-modified ZnO dilute magnetic solid solution with multilevel self-assembled network structure

Yi-Xiang Chen1Dan Zhou1Xiao-Jiao Guo1,2Xiu Yang1,2Si-Rui Zhao1Yi Lu1,2Jin-Ku Liu1 ( )
Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
Material Corrosion and Protection, Key Laboratory of Sichuan Province, Zigong 643000, China
Show Author Information

Graphical Abstract

ZnO-based dilute magnetic solid solution (DMSs) with hydrophobic micronano network structure was synthesized for steel corrosion protection, which was further imparted with dilute magnetic properties through the doping of mixed-valence Mn elements. The corrosion protection mechanism could be summarized into three parts: (a) magnetically induced electron transfer effect, (b) tertiary shielding effect of multilevel self-assembled network nanostructure, and (c) anode replacement and photocathode protection.

Abstract

The design and performance prediction of efficient anticorrosion materials is a work full of value, novelty, and challenges. In this work, from the perspective of nanostructure and composition, ZnO-based dilute magnetic solid solution (DMSs) with hydrophobic micronano network structure was synthesized through the self-induced effect of raw materials, the impact-resistant network structure, complex micro-channels, and densely nested layers resisted electrolyte intrusion. Further, the doping of mixed valence Mn element endowed the solid solution with dilute magnetic properties, so the Lorentz force from micromagnetic field changed the movement path of electrons produced by the anode reaction to improve the corrosion inhibition ability of the protective layer. Under the synergy of morphology and magnetism, the corrosion resistance of the DMSs materials was 555.4% and 173.8% higher than that of epoxy resin and ZnO shielding layer, respectively. Besides, a valuable phenomenon was found that the photocatalytic property of DMSs materials was positively correlated with their corrosive defense. In conclusion, this research provided a novel design idea for new high-efficiency anticorrosion materials.

Electronic Supplementary Material

Download File(s)
12274_2022_4278_MOESM1_ESM.pdf (1.6 MB)

References

1

Sharma, P.; Gupta, A.; Rao, K. V.; Owens, F. J.; Sharma, R.; Ahuja, R.; Guillen, J. M. O.; Johansson, B.; Gehring, G. A. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2003, 2, 673–677.

2

Guo, X. J.; Yuan, X. Y.; Zhao, S. R.; Liu, J. K; Xue, X. Z.; Xue, Y. N. Improving anticorrosion performance of hydroxyapatite via controlling exposed crystal surface and applications. J. Alloys Compd. 2020, 845, 156290.

3

Guo, X. J.; Yang, X.; Yuan, X. Y.; Zhou, D.; Lu, Y.; Liu, J. K. Oxygen vacancy defects and a field effect-mediated ZnO/WO2.92 heterojunction for enhanced corrosion resistance. Inorg. Chem. 2021, 60, 15390–15403.

4

Lee, J.; Lee, M. H.; Choi, C. H. Design of robust lubricant-infused surfaces for anti-corrosion. ACS Appl. Mater. Interfaces 2022, 14, 2411–2423.

5

Khajetoorians, A. A.; Chilian, B.; Wiebe, J.; Schuwalow, S.; Lechermann, F.; Wiesendanger, R. Detecting excitation and magnetization of individual dopants in a semiconductor. Nature 2010, 467, 1084–1087.

6

Eliseev, A. A.; Trusov, L. A.; Anokhin, E. O.; Chumakov, A. P.; Korolev, V. V.; Sleptsova, A. E.; Boesecke, P.; Pryakhina, V. I.; Shur, V. Y.; Kazin, P. E. et al. Tunable order in colloids of hard magnetic hexaferrite nanoplatelets. Nano Res. 2022, 15, 898–906.

7

Pulingam, T.; Parumasivam, T.; Gazzali, A. M.; Sulaiman, A. M.; Chee, J. Y.; Lakshmanan, M.; Chin, C. F.; Sudesh, K. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur. J. Pharm. Sci. 2022, 170, 106103.

8

Sokolov, I. S.; Averyanov, D. V.; Wilhelm, F.; Rogalev, A.; Parfenov, O. E.; Taldenkov, A. N.; Karateev, I. A.; Tokmachev, A. M.; Storchak, V. G. Emerging 2D magnetic states in a graphene-based monolayer of EuC6. Nano Res. 2022, 15, 408–413.

9

Nurfani, E.; Lailani, A.; Kesuma, W. A. P.; Anrokhi, M. S.; Kadja, G. T. M.; Rozana, M. UV sensitivity enhancement in Fe-doped ZnO films grown by ultrafast spray pyrolysis. Opt. Mater. 2021, 112, 110768.

10

Shakil, M. R.; El-Sawy, A. M.; Tasnim, H.; Meguerdichian, A. G.; Jin, J.; Dubrosky, J. P.; Suib, S. L. Single-doped and multidoped transition-metal (Mn, Fe, Co, and Ni) ZnO and their electrocatalytic activities for oxygen reduction reaction. Inorg. Chem. 2018, 57, 9977–9987.

11

Lausecker, C.; Salem, B.; Baillin, X.; Chaix-Pluchery, O.; Roussel, H.; Labau, S.; Pelissier, B.; Appert, E.; Consonni, V. Chemical bath deposition of ZnO nanowires using copper nitrate as an additive for compensating doping. Inorg. Chem. 2021, 60, 1612–1623.

12

Lourenço, A. A.; Silva, V. D.; da Silva, R. B.; Silva, U. C.; Chesman, C.; Salvador, C.; Simões, T. A.; Macedo, D. A.; da Silva, F. F. Metal-organic frameworks as template for synthesis of Mn3+/Mn4+ mixed valence manganese cobaltites electrocatalysts for oxygen evolution reaction. J. Colloid Interface Sci. 2021, 582, 124–136.

13

Sharma, P.; Gupta, A.; Owens, F. J.; Inoue, A.; Rao, K. V. Room temperature spintronic material-Mn-doped ZnO revisited. J. Magn. Magn. Mater. 2004, 282, 115–121.

14

Peng, P.; She, J.; Tang, A. T.; Zhang, J. Y.; Song, K.; Yang, Q. S.; Pan, F. S. A strategy to regulate the microstructure and properties of Mg-2.0Zn-1.5Mn magnesium alloy by tracing the existence of Mn element. J. Alloys Compd. 2022, 890, 161789.

15

Aliyu, H. D.; Alonso, J. M.; de la Presa, P.; Pottker, W. E.; Ita, B.; Garcia-Hernández, M.; Hernando, A. Surface ferromagnetism in Pr0.5Ca0.5MnO3 nanoparticles as a consequence of local imbalance in Mn3+:Mn4+ ratio. Chem. Mater. 2018, 30, 7138–7145.

16

Pang, C.; Li, R.; Dong, N. N.; Li, Z. Q.; Wang, J.; Ren, F.; Chen, F. Plasmonic core–shell nano-heterostructures with temperature-dependent optical nonlinearity. Nanoscale 2020, 12, 22995–23002.

17

Gayle, A. J.; Berquist, Z. J.; Chen, Y. X.; Hill, A. J.; Hoffman, J. Y.; Bielinski, A. R.; Lenert, A.; Dasgupta, N. P. Tunable atomic layer deposition into ultra-high-aspect-ratio (> 60,000:1) aerogel monoliths enabled by transport modeling.Chem. Mater. 2021, 33, 5572–5583.

18

Jothi, K. J.; Palanivelu, K. Facile fabrication of core–shell Pr6O11-ZnO modified silane coatings for anti-corrosion applications. Appl. Surf. Sci. 2014, 288, 60–68.

19

Fan, H. F.; Guo, Z. G. Robust multi-functional slippery surface with hollow ZnO nanotube structures. New J. Chem. 2020, 44, 15483–15491.

20

Tian, Z. R.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Mcdermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. F. Complex and oriented ZnO nanostructures. Nat. Mater. 2003, 2, 821–826.

21

Zhang, J. Y.; Zhou, D.; Xue, X. Z.; Liu, J. K. Multistage assembled Rubik’s cube-like structure and outstanding anticorrosion performance induced by magnetic metal doping. Chem. Mater. 2018, 30, 7296–7305.

22

Mukherjee, I.; Cilamkoti, V.; Dutta, R. K. Sunlight-driven photocatalytic degradation of ciprofloxacin by carbon dots embedded in ZnO nanostructures. ACS Appl. Nano Mater. 2021, 4, 7686–7697.

23

Wang, X. X.; Guan, D. H.; Li, F.; Li, M. L.; Zheng, L. J.; Xu, J. J. Magnetic and optical field multi-assisted Li-O2 batteries with ultrahigh energy efficiency and cycle stability. Adv. Mater. 2022, 34, 2104792.

24

Bai, X. J.; Sun, B. X.; Wang, X. Y.; Zhang, T. S.; Hao, Q.; Ni, B. J.; Zong, R. L.; Zhang, Z. Y.; Zhang, X. R.; Li, H. Y. Defective crystal plane-oriented induced lattice polarization for the photocatalytic enhancement of ZnO. CrystEngComm 2020, 22, 2709–2717.

25

Badwe, N.; Chen, X.; Schreiber, D. K.; Olszta, M. J.; Overman, N. R.; Karasz, E. K.; Tse, A. Y.; Bruemmer, S. M.; Sieradzki, K. Decoupling the role of stress and corrosion in the intergranular cracking of noble-metal alloys. Nat. Mater. 2018, 17, 887–893.

26

Panchal, P.; Paul, D. R.; Sharma, A.; Choudhary, P.; Meena, P.; Nehra, S. P. Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water. J. Colloid Interface Sci. 2020, 563, 370–380.

27

Huang, B. R.; Kathiravan, D.; Saravanan, A.; Yang, W. L.; Wu, Y. Z. Modified interfaces of twisted root-like 2D configured ZnO hierarchical nanostructures through surface lattice coating of NiO/graphene and their enhanced UV photodetection properties. J. Alloys Compd. 2021, 868, 159240.

28

Qamar, M. A.; Shahid, S.; Javed, M.; Sher, M.; Iqbal, S.; Bahadur, A.; Li, D. X. Fabricated novel g-C3N4/Mn doped ZnO nanocomposite as highly active photocatalyst for the disinfection of pathogens and degradation of the organic pollutants from wastewater under sunlight radiations. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 611, 125863.

29

Li, C. L.; Chen, S. R.; Gao, X. X.; Zhang, W.; Wang, Y. F. Fabrication, characterization and photoelectrochemical properties of CdS/CdSe nanofilm co-sensitized ZnO nanorod arrays on Zn foil substrate. J. Colloid Interface Sci. 2021, 588, 269–282.

30

Oh, I. K.; Kim, W. H.; Zeng, L.; Singh, J.; Bae, D.; Mackus, A. J. M.; Song, J. G.; Seo, S.; Shong, B.; Kim, H. et al. Synthesis of a hybrid nanostructure of ZnO-decorated MoS2 by atomic layer deposition. ACS Nano 2020, 14, 1757–1769.

31

Chen, C.; Jin, J. P.; Chen, S. T.; Wang, T. X.; Xiao, J. R.; Peng, T. Y. In-situ growth of ultrafine ZnO on g-C3N4 layer for highly active and selective CO2 photoreduction to CH4 under visible light. Mater. Res. Bull. 2021, 137, 111177.

32

Liu, S. W.; Li, K.; Shao, D. D.; Shen, Q. Y.; Huang, S. S.; Ji, H.; Xie, Y. T.; Zheng, X. B. Dual enzyme-like activities of transition metal-doped MnO2 nanocoatings and their dependence on the electronic band structure and ionic dissolution. Appl. Surf. Sci. 2020, 534, 147649.

33

Smith, P. F.; Deibert, B. J.; Kaushik, S.; Gardner, G.; Hwang, S.; Wang, H.; Al-Sharab, J. F.; Garfunkel, E.; Fabris, L.; Li, J. et al. Coordination geometry and oxidation state requirements of corner-sharing MnO6 octahedra for water oxidation catalysis: An investigation of manganite (γ-MnOOH). ACS Catal. 2016, 6, 2089–2099.

34

Zhang, Z. G.; Huo, H.; Yu, Z. J.; Xiang, L. Z.; Xie, B. X.; Du, C. Y.; Wang, J. J.; Yin, G. P. Unraveling the reaction mechanism of low dose Mn dopant in Ni(OH)2 supercapacitor electrode. J. Energy Chem. 2021, 61, 497–506.

35

Jia, Z. Z.; Hong, R. Y. Anticorrosive and photocatalytic properties research of epoxy-silica organic–inorganic coating. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 622, 126647.

36

Shubha, H. N.; Venkatesha, T. V.; Vathsala, K.; Pavitra, M. K.; Punith Kumar, M. K. Preparation of self assembled sodium oleate monolayer on mild steel and its corrosion inhibition behavior in saline water. ACS Appl. Mater. Interfaces 2013, 5, 10738–10744.

37

Over, H. Fundamental studies of planar single-crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting. ACS Catal. 2021, 11, 8848–8871.

38

Chen, B. Y.; Zhang, R. R.; Hou, Y. Q.; Zhang, J.; Chen, S. Y.; Han, Y. H.; Chen, X. Y.; Hou, X. Light-responsive and corrosion-resistant gas valve with non-thermal effective liquid-gating positional flow control. Light Sci. Appl. 2021, 10, 127.

39

Wang, Y.; Zhou, X. Y.; Yin, M. H.; Pu, J. B.; Yuan, N. Y.; Ding, J. N. Superhydrophobic and self-healing Mg-Al layered double hydroxide/silane composite coatings on the Mg alloy surface with a long-term anti-corrosion lifetime. Langmuir 2021, 37, 8129–8138.

40

Zhu, G.; Zhao, Y.; Liu, L.; Wang, L. Y.; Wang, J.; Yu, S. R. Facile fabrication and evaluation of self-healing Zn-Al layered double hydroxide superhydrophobic coating on aluminum alloy. J. Mater. Sci. 2021, 56, 14803–14820.

41

Lu, J. X.; Wu, S. L.; Liang, Z. H.; Yang, H. C.; Li, W. H. Brushable lubricant-infused porous coating with enhanced stability by one-step phase separation. ACS Appl. Mater. Interfaces 2021, 13, 23134–23141.

42

Karajić, A.; Merzeau, P.; Suraniti, E.; Gounel, S.; Jaillet, C.; Kuhn, A.; Mano, N. Enzymatic glucose-oxygen biofuel cells for highly efficient interfacial corrosion protection. ACS Appl. Energy Mater. 2020, 3, 4441–4448.

43

Son, G. C.; Hwang, D. K.; Jang, J.; Chee, S. S.; Cho, K.; Myoung, J. M.; Ham, M. H. Solution-processed highly adhesive graphene coatings for corrosion inhibition of metals. Nano Res. 2019, 12, 19–23.

44

Kuş, E.; Mansfeld, F. An evaluation of the electrochemical frequency modulation (EFM) technique. Corros. Sci. 2006, 48, 965–979.

45

Xie, Z. H.; Li, D.; Skeete, Z.; Sharma, A.; Zhong, C. J. Nanocontainer-enhanced self-healing for corrosion-resistant Ni coating on Mg alloy. ACS Appl. Mater. Interfaces 2017, 9, 36247–36260.

46

Zhu, H. L.; Li, X. F.; Lu, X. M.; Wang, J. X.; Hu, Z. Y.; Ma, X. M. Efficiency of Gemini surfactant containing semi-rigid spacer as microbial corrosion inhibitor for carbon steel in simulated seawater. Bioelectrochemistry 2021, 140, 107809.

47

Zhan, Z. B.; Li, Z. H.; Yu, Z.; Singh, S.; Guo, C. L. Superhydrophobic Al surfaces with properties of anticorrosion and reparability. ACS Omega 2018, 3, 17425–17429.

48

Man, S. S.; Bao, H. B.; Xu, K.; Yang, H. F.; Sun, Q.; Xu, L.; Yang, W. J.; Mo, Z. H.; Li, X. M. Preparation and characterization of Nd-Sb co-doped SnO2 nanoflower electrode by hydrothermal method for the degradation of norfloxacin. Chem. Eng. J. 2021, 417, 129266.

49

Chang, L. T.; Wang, C. Y.; Tang, J. S.; Nie, T. X.; Jiang, W. J.; Chu, C. P.; Arafin, S.; He, L.; Afsal, M.; Chen, L. J. et al. Electric-field control of ferromagnetism in Mn-doped ZnO nanowires. Nano Lett. 2014, 14, 1823–1829.

50

Tang, W. Z. Comment on “Magnetization reversal in nucleation controlled magnets. I. Theory; and II. Effect of grain size and size distribution on intrinsic coercivity of Fe-Nd-B magnets”. J. Appl. Phys. 1991, 69, 3778.

51

Gu, H.; Jiang, Y. Z.; Xu, Y. B.; Yan, M. Effect of defects on room-temperature ferromagnetism in Co and Na co-doped ZnO. Appl. Phys. A 2012, 107, 919–923.

52

Mouhib, Y.; Belaiche, M.; Elansary, M.; Ferdi, C. A. Effect of heating temperature on structural and magnetic properties of zinc ferrite nanoparticles synthesized for the first time in presence of Moroccan reagents. J. Alloys Compd. 2022, 895, 162634.

53

Elward, J. M.; Chakraborty, A. Effect of dot size on exciton binding energy and electron–hole recombination probability in CdSe quantum dots. J. Chem. Theory Comput. 2013, 9, 4351–4359.

54

Terra, J. C. S.; Desgranges, A.; Monnereau, C.; Sanchez, E. H.; De Toro, J. A.; Amara, Z.; Moores, A. Photocatalysis meets magnetism: Designing magnetically recoverable supports for visible-light photocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 24895–24904.

55

Zan, G. T.; Wu, T.; Zhang, Z. L.; Li, J.; Zhou, J. C.; Zhu, F.; Chen, H. X.; Wen, M.; Yang, X. C.; Peng, X. J. et al. Bioinspired nanocomposites with self-adaptive stress dispersion for super-foldable electrodes. Adv. Sci. 2022, 9, 2103714.

56

Yang, D. R.; Zuo, S. W.; Yang, H. Z.; Zhou, Y; Lu, Q. C.; Wang, X. Tailoring layer number of 2D porphyrin-based MOFs towards photocoupled electroreduction of CO2. Adv. Mater. 2022, 34, 2107293.

57

Gupta, A.; Srivastava, C. Electrodeposition current density induced texture and grain boundary engineering in Sn coatings for enhanced corrosion resistance. Corros. Sci. 2022, 194, 109945.

58

Lan, X.; Zhang, B. B.; Wang, J.; Fan, X. Q.; Zhang, J. Hydrothermally structured superhydrophobic surface with superior anti-corrosion, anti-bacterial and anti-icing behaviors. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 624, 126820.

59

Shi, Z. T.; Qi, X. Q.; Zhang, Z. K.; Zhang, J. F.; Guo, C. C.; Liu, K.; Xu, W.; Xu, J.; Zhu, Z. H. Facile synthesis of ZnO/PdSe2 core–shell heterojunction for efficient photodetector application. Chem. Eng. J. 2021, 413, 127484.

60

Hosseini, J.; Abdolmaleki, M.; Pouretedal, H. R.; Keshavarz, M. H. Electrocatalytic activity of porous nanostructured Fe/Pt-Fe electrode for methanol electrooxidation in alkaline media. Chin. J. Catal. 2015, 36, 1029–1034.

Nano Research
Pages 6590-6600
Cite this article:
Chen Y-X, Zhou D, Guo X-J, et al. Improved anticorrosion performance of mixed valence Mn-modified ZnO dilute magnetic solid solution with multilevel self-assembled network structure. Nano Research, 2022, 15(7): 6590-6600. https://doi.org/10.1007/s12274-022-4278-6
Topics:

756

Views

8

Crossref

7

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 19 February 2022
Revised: 24 February 2022
Accepted: 24 February 2022
Published: 02 May 2022
© Tsinghua University Press 2022
Return