AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Activating copper oxide for stable electrocatalytic ammonia oxidation reaction via in-situ introducing oxygen vacancies

Jingjing Huang1,2,3,§Zhe Chen1,4,§Jinmeng Cai5Yongzhen Jin1,2,3Tao Wang4,6( )Jianhui Wang1,2,3( )
Department of Chemistry, Zhejiang University, Hangzhou 310027, China
Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou 310024, China
Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
School of Science, Westlake Institute for Advanced Study, Hangzhou 310024, China

§ Jingjing Huang and Zhe Chen contributed equally to this work.

Show Author Information

Graphical Abstract

In-situ electrochemically introducing oxygen vacancies (Vo) not only turns the inactive CuO into efficient electrocatalytic ammonia oxidation reaction (EAOR) catalyst but also achieves a high stability of over 400 h at a high current density of ~ 200 mA·cm−2. The presence of Vo on the CuO surface induces a remarkable upshift of the d-band center of active Cu site closer to the Fermi level, which significantly stabilizes the reaction intermediates (*NHx) and efficiently oxidizes NH3 into N2.

Abstract

Electrocatalytic ammonia oxidation reaction (EAOR) provides an ideal solution for on-board hydrogen supply for fuel cells, while the lack of efficient and durable EAOR catalysts has been a long-standing obstacle for its practical application. Herein, we reported that the defect engineering via in-situ electrochemically introducing oxygen vacancies (Vo) not only turns the inactive CuO into efficient EAOR catalyst but also achieves a high stability of over 400 h at a high current density of ~ 200 mA·cm−2. Theoretical simulation reveals that the presence of Vo on the CuO surface induces a remarkable upshift of the d-band center of active Cu site closer to the Fermi level, which significantly stabilizes the reaction intermediates (*NHx) and efficiently oxidizes NH3 into N2. This Vo-modulated CuO shows a different catalytic mechanism from that on the conventional Pt-based catalysts, paving a new avenue to develop inexpensive, efficient, and robust catalysts, not limited to EAOR.

Electronic Supplementary Material

Download File(s)
12274_2022_4279_MOESM1_ESM.pdf (4 MB)

References

1

Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.

2

He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen carriers. Nat. Rev. Mater. 2016, 1, 16059.

3

Hua, T. Q.; Ahluwalia, R. K.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J. Technical assessment of compressed hydrogen storage tank systems for automotive applications. Int. J. Hydrogen Energy 2011, 36, 3037–3049.

4

Guo, J. P.; Chen, P. Catalyst: NH3 as an energy carrier. Chem 2017, 3, 709–712.

5

MacFarlane, D. R.; Cherepanov, P. V.; Choi, J.; Suryanto, B. H. R.; Hodgetts, R. Y.; Bakker, J. M.; Ferrero Vallana, F. M.; Simonov, A. N. A roadmap to the ammonia economy. Joule 2020, 4, 1186–1205.

6

Zamfirescu, C.; Dincer, I. Using ammonia as a sustainable fuel. J. Power Sources 2008, 185, 459–465.

7

Simons, E. L.; Cairns, E. J.; Surd, D. J. The performance of direct ammonia fuel cells. J. Electrochem. Soc. 1969, 116, 556.

8

Hanada, N.; Hino, S.; Ichikawa, T.; Suzuki, H.; Takai, K.; Kojima, Y. Hydrogen generation by electrolysis of liquid ammonia. Chem. Commun. 2010, 46, 7775–7777.

9

Siddharth, K.; Chan, Y.; Wang, L.; Shao, M. H. Ammonia electro-oxidation reaction: Recent development in mechanistic understanding and electrocatalyst design. Curr. Opin. Electrochem. 2018, 9, 151–157.

10

Guo, W. H.; Zhang, K. X.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658–5716.

11

Vitse, F.; Cooper, M.; Botte, G. G. On the use of ammonia electrolysis for hydrogen production. J. Power Sources 2005, 142, 18–26.

12

Li, Z. F.; Wang, Y. X.; Botte, G. G. Revisiting the electrochemical oxidation of ammonia on carbon-supported metal nanoparticle catalysts. Electrochim. Acta 2017, 228, 351–360.

13

Boggs, B. K.; Botte, G. G. Optimization of Pt-Ir on carbon fiber paper for the electro-oxidation of ammonia in alkaline media. Electrochim. Acta 2010, 55, 5287–5293.

14

Martı́nez-Rodrı́guez, R. A.; Vidal-Iglesias, F. J.; Solla-Gullón, J.; Cabrera, C. R.; Feliu, J. M. Synthesis of Pt nanoparticles in water-in-oil microemulsion: Effect of HCl on their surface structure. J. Am. Chem. Soc. 2014, 136, 1280–1283.

15

Katayama, Y.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Electrochemical oxidation of ammonia over rare earth oxide modified platinum catalysts. J. Phys. Chem. C 2015, 119, 9134–9141.

16

Zhang, C. L.; Hwang, S. Y.; Peng, Z. M. Shape-enhanced ammonia electro-oxidation property of a cubic platinum nanocrystal catalyst prepared by surfactant-free synthesis. J. Mater. Chem. A 2013, 1, 14402–14408.

17

Assumpção, M. H. M. T.; Da Silva, S. G.; De Souza, R. F. B.; Buzzo, G. S.; Spinacé, E. V.; Neto, A. O.; Silva, J. C. M. Direct ammonia fuel cell performance using PtIr/C as anode electrocatalysts. Int. J. Hydrogen Energy 2014, 39, 5148–5152.

18

Zhou, Y. F.; Zhang, G. Q.; Yu, M. C.; Wang, X. J.; Lv, J. L.; Yang, F. L. Free-standing 3D porous N-doped graphene aerogel supported platinum nanocluster for efficient hydrogen production from ammonia electrolysis. ACS Sustainable Chem. Eng. 2018, 6, 8437–8446.

19

Li, Y.; Li, X.; Pillai, H. S.; Lattimer, J.; Adli, N. M.; Karakalos, S.; Chen, M. J.; Guo, L.; Xu, H.; Yang, J. et al. Ternary PtIrNi catalysts for efficient electrochemical ammonia oxidation. ACS Catal. 2020, 10, 3945–3957.

20

Chan, Y. T.; Siddharth, K.; Shao, M. H. Investigation of cubic Pt alloys for ammonia oxidation reaction. Nano Res. 2020, 13, 1920–1927.

21

Li, Y.; Pillai, H. S.; Wang, T.; Hwang, S.; Zhao, Y.; Qiao, Z.; Mu, Q. M.; Karakalos, S.; Chen, M. J.; Yang, J. et al. High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells. Energy Environ. Sci. 2021, 14, 1449–1460.

22

Xu, W.; Lan, R.; Du, D. W.; Humphreys, J.; Walker, M.; Wu, Z. C.; Wang, H. T.; Tao, S. W. Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia. Appl. Catal. B 2017, 218, 470–479.

23

Xu, W.; Du, D. W.; Lan, R.; Humphreys, J.; Miller, D. N.; Walker, M.; Wu, Z. C.; Irvine, J. T. S.; Tao, S. W. Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia. Appl. Catal. B 2018, 237, 1101–1109.

24

Zhang, H. M.; Wang, Y. F.; Kwok, Y. H.; Wu, Z. C.; Xia, D. H.; Leung, D. Y. C. A direct ammonia microfluidic fuel cell using NiCu nanoparticles supported on carbon nanotubes as an electrocatalyst. ChemSusChem 2018, 11, 2889–2897.

25

Nagita, K.; Yuhara, Y.; Fujii, K.; Katayama, Y.; Nakayama, M. Ni- and Cu-co-intercalated layered manganese oxide for highly efficient electro-oxidation of ammonia selective to nitrogen. ACS Appl. Mater. Interfaces 2021, 13, 28098–28107.

26
He, S.; Somayaji, V.; Wang, M. D.; Lee, S. H.; Geng, Z. J.; Zhu, S. Y.; Novello, P.; Varanasi, C. V.; Liu, J. High entropy spinel oxide for efficient electrochemical oxidation of ammonia. Nano Res., in press, https://doi.org/10.1007/s12274-021-3665-8.
27

He, S.; Chen, Y. F.; Wang, M. D.; Liu, K.; Novello, P.; Li, X. Q.; Zhu, S. Y.; Liu, J. Metal nitride nanosheets enable highly efficient electrochemical oxidation of ammonia. Nano Energy 2021, 80, 105528.

28

Huang, J. J.; Cai, J. M.; Wang, J. H. Nanostructured wire-in-plate electrocatalyst for high-durability production of hydrogen and nitrogen from alkaline ammonia solution. ACS Appl. Energy Mater. 2020, 3, 4108–4113.

29

Klinman, J. P. Mechanisms whereby mononuclear copper proteins functionalize organic substrates. Chem. Rev. 1996, 96, 2541–2562.

30

Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based rlectrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.

31

Li, B.; Gu, P.; Feng, Y. C.; Zhang, G. X.; Huang, K. S.; Xue, H. G.; Pang, H. Ultrathin nickel-cobalt phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv. Funct. Mater. 2017, 27, 1605784.

32

Gunkel, F.; Christensen, D. V.; Chen, Y. Z.; Pryds, N. Oxygen vacancies: The (in)visible friend of oxide electronics. Appl. Phys. Lett. 2020, 116, 120505.

33

Fan, H. B.; Yang, S. Y.; Zhang, P. F.; Wei, H. Y.; Liu, X. L.; Jiao, C. M.; Zhu, Q. S.; Chen, Y. H.; Wang, Z. G. Investigation of oxygen vacancy and interstitial oxygen defects in ZnO films by photoluminescence and X-ray photoelectron spectroscopy. Chinese Phys. Lett. 2007, 24, 2108–2111.

34

Devi, P.; Malik, K.; Arora, E.; Bhattacharya, S.; Kalendra, V.; Lakshmi, K. V.; Verma, A.; Singh, J. P. Selective electrochemical reduction of CO2 to CO on CuO/In2O3 nanocomposites: Role of oxygen vacancies. Catal. Sci. Technol. 2019, 9, 5339–5349.

35

Drouilly, C.; Krafft, J. M.; Averseng, F.; Casale, S.; Bazer-Bachi, D.; Chizallet, C.; Lecocq, V.; Vezin, H.; Lauron-Pernot, H.; Costentin, G. ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR. J. Phys. Chem. C 2012, 116, 21297–21307.

36

Wang, S. C.; He, T. W.; Chen, P.; Du, A. J.; Ostrikov, K.; Huang, W.; Wang, L. Z. In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes. Adv. Mater. 2020, 32, 2001385.

37

Li, X. R.; Wei, J. L.; Li, Q.; Zheng, S. S.; Xu, Y. X.; Du, P.; Chen, C. Y.; Zhao, J. Y.; Xue, H. G.; Xu, Q. et al. Nitrogen-doped cobalt oxide nanostructures derived from cobalt-alanine complexes for high-performance oxygen evolution reactions. Adv. Funct. Mater. 2018, 28, 1800886.

38

Zhou, Q. Q.; Li, T. T.; Qian, J. J.; Xu, W.; Hu, Y.; Zheng, Y. Q. CuO nanorod arrays shelled with amorphous NiFe layered double hydroxide film for enhanced electrocatalytic water oxidation activity. ACS Appl. Energy Mater. 2018, 1, 1364–1373.

39

Wang, Q. C.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 2019, 12, 1730–1750.

40

Jia, Y.; Jiang, K.; Wang, H. T.; Yao, X. D. The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 2019, 5, 1371–1397.

41

Zhu, K. Y.; Shi, F.; Zhu, X. F.; Yang, W. S. The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano Energy 2020, 73, 104761.

42

Ling, T.; Yan, D. Y.; Wang, H.; Jiao, Y.; Hu, Z. P.; Zheng, Y.; Zheng, L. R.; Mao, J.; Liu, H.; Du, X. W. et al. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun. 2017, 8, 1509.

43

Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

44

May, K. J.; Carlton, C. E.; Stoerzinger, K. A.; Risch, M.; Suntivich, J.; Lee, Y. L.; Grimaud, A.; Shao-Horn, Y. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 2012, 3, 3264–3270.

45

Li, T.; Kasian, O.; Cherevko, S.; Zhang, S.; Geiger, S.; Scheu, C.; Felfer, P.; Raabe, D.; Gault, B.; Mayrhofer, K. J. J. Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nat. Catal. 2018, 1, 300–305.

46

Zhang, X. B.; Han, S. B.; Zhu, B. E.; Zhang, G. H.; Li, X. Y.; Gao, Y.; Wu, Z. X.; Yang, B.; Liu, Y. F.; Baaziz, W. et al. Reversible loss of core–shell structure for Ni-Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 2020, 3, 411–417.

47

Scheiber, P.; Fidler, M.; Dulub, O.; Schmid, M.; Diebold, U.; Hou, W. Y.; Aschauer, U.; Selloni, A. (Sub)surface mobility of oxygen vacancies at the TiO2 anatase (101) surface. Phys. Rev. Lett. 2012, 109, 136103.

48

Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B. J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 2017, 16, 925–931.

49

Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.

50

Bunce, N. J.; Bejan, D. Mechanism of electrochemical oxidation of ammonia. Electrochim. Acta 2011, 56, 8085–8093.

51

Gootzen, J. F. E.; Wonders, A. H.; Visscher, W.; Van Santen, R. A.; Van Veen, J. A. R. A DEMS and cyclic voltammetry study of NH3 oxidation on platinized platinum. Electrochim. Acta 1998, 43, 1851–1861.

52

Matsui, T.; Suzuki, S.; Katayama, Y.; Yamauchi, K.; Okanishi, T.; Muroyama, H.; Eguchi, K. In situ attenuated total reflection infrared spectroscopy on electrochemical ammonia oxidation over Pt electrode in alkaline aqueous solutions. Langmuir 2015, 31, 11717–11723.

53

Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71–129.

Nano Research
Pages 5987-5994
Cite this article:
Huang J, Chen Z, Cai J, et al. Activating copper oxide for stable electrocatalytic ammonia oxidation reaction via in-situ introducing oxygen vacancies. Nano Research, 2022, 15(7): 5987-5994. https://doi.org/10.1007/s12274-022-4279-5
Topics:

1083

Views

50

Crossref

42

Web of Science

43

Scopus

1

CSCD

Altmetrics

Received: 01 January 2022
Revised: 26 February 2022
Accepted: 27 February 2022
Published: 30 April 2022
© Tsinghua University Press 2022
Return