AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synchronous constructing ion channels and confined space of Co3O4 anode for high-performance lithium-ion batteries

Yan Zhou1Chao Wang1Feiran Chen1Tingjuan Wang1Yaoyao Ni1Hongxia Sun1Nan Yu1Baoyou Geng1,2( )
College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
Show Author Information

Graphical Abstract

A strategy of simultaneous construction of multi-continuous ion channels and confined space was proposed for the first time.

Abstract

The yolk–shell structure has a unique advantage in lithium-ion batteries applications due to its ability to effectively buffer the volume expansion of the lithiation/delithiation process. However, its development is limited by the low contact point between the core and shell. Herein, we propose a general strategy of simultaneous construction of sufficient reserved space and multi-continuous active channels by pyrolysis of two carbon substrates. A double-shell structure consisting of Co3O4 anchored to hollow carbon sphere and external self-supporting zeolitic imidazolate framework (ZIF) layer was constructed by spray pyrolysis and additional carbon coating in-situ growth. In the process of high-temperature calcination, the carbon and nitrogen layers between the shells separate, creating additional space, while the Co3O4 particles between the shells remain are still in close contact to form continuous and fast electron conduction channels, which can realize better charge transfer. Due to the synergy of these design principles, the material has ultra-high initial discharge capacities of 2,183.1 mAh·g−1 at 0.2 A·g−1 with capacity of 1,121.36 mAh·g−1 after 250 cycles, the long-term capacities retention rate is about 92.4% after 700 cycles at 1 A·g−1. This unique channel-type double-shell structure fights a way out to prepare novel electrode materials with high performance.

Electronic Supplementary Material

Download File(s)
12274_2022_4281_MOESM1_ESM.pdf (2.8 MB)

References

1

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

2

Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

3

Jiao, S. Q.; Fu, J. M.; Wu, M. Z.; Hua, T.; Hu, H. B. Ion sieve: Tailoring Zn2+ desolvation kinetics and flux toward dendrite-free metallic zinc anodes. ACS Nano 2022, 16, 1013–1024.

4

Liu, W.; Liu, P. C.; Mitlin, D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv. Energy Mater. 2020, 10, 2002297.

5

Qin, K. Q.; Holguin, K.; Mohammadiroudbari, M.; Huang, J. H.; Kim, E. Y. S.; Hall, R.; Luo, C. Strategies in structure and electrolyte design for high-performance lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2009694.

6

Liu, H.; Liu, X.; Wang, S. L.; Liu, H. K.; Li, L. Transition metal based battery-type electrodes in hybrid supercapacitors: A review. Energy Storage Mater. 2020, 28, 122–145.

7

Cong, L. D.; Zhang, S. C.; Zhu, H. Y.; Chen, W. X.; Huang, X. Y.; Xing, Y. L.; Xia, J.; Yang, P. H.; Lu, X. Structure-design and theoretical-calculation for ultrasmall Co3O4 anchored into ionic liquid modified graphene as anode of flexible lithium-ion batteries. Nano Res. 2022, 15, 2104–2111.

8

Hou, J. B.; Yang, M.; Wang, D. Y.; Zhang, J. L. Fundamentals and challenges of lithium ion batteries at temperatures between-40 and 60 °C. Adv. Energy Mater. 2020, 10, 1904152.

9

Wu, D. B.; Wang, C.; Wu, H. J.; Wang, S.; Wang, F. Q.; Chen, Z.; Zhao, T. B.; Zhang, Z. Y.; Zhang, L. Y.; Li, C. M. Synthesis of hollow Co3O4 nanocrystals in situ anchored on holey graphene for high rate lithium-ion batteries. Carbon 2020, 163, 137–144.

10

Dong, Y.; Jiang, X. Y.; Mo, J. H.; Zhou, Y. Z.; Zhou, J. P. Hollow CuO nanoparticles in carbon microspheres prepared from cellulose-cuprammonium solution as anode materials for Li-ion batteries. Chem. Eng. J. 2020, 381, 122614.

11

Li, L.; Dai, J.; Jiang, G. X.; Sun, X. Y.; Huang, Z. H.; Xie, Z. J.; Cao, B. Q. Three-dimensional mesoporous straw-like Co3O4 anode with enhanced electrochemical performance for lithium-ion batteries. ChemistrySelect 2019, 4, 6879–6885.

12

Wang, C. H.; Bai, G. L.; Yang, Y. F.; Liu, X. J.; Shao, H. X. Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes. Nano Res. 2019, 12, 217–223.

13

Yan, C. S.; Chen, G.; Zhou, X.; Sun, J. X.; Lv, C. D. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 1428–1436.

14

Liu, M. T.; Deng, X.; Ma, Y. D.; Xie, W. H.; Hou, X. Y.; Fu, Y. J.; He, D. Y. Well-designed hierarchical Co3O4 Architecture as a long-life and ultrahigh rate capacity anode for advanced lithium-ion batteries. Adv. Mater. Interfaces 2017, 4, 1700553.

15

Huang, Y.; Fang, Y. J.; Lu, X. F.; Luan, D. Y.; Lou, X. W. Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage. Angew. Chem., Int. Ed. 2020, 59, 19914–19918.

16

Zhang, K.; Xiong, F. Y.; Zhou, J. P.; Mai, L. Q.; Zhang, L. N. Universal construction of ultrafine metal oxides coupled in N-enriched 3D carbon nanofibers for high-performance lithium/sodium storage. Nano Energy 2020, 67, 104222.

17

Sun, B. Y.; Lou, S. F.; Zheng, W.; Qian, Z. Y.; Cui, C.; Zuo, P. J.; Du, C. Y.; Xie, J. Y.; Wang, J. J.; Yin, G. P. Synergistic engineering of defects and architecture in Co3O4@C nanosheets toward Li/Na ion batteries with enhanced pseudocapacitances. Nano Energy 2020, 78, 105366.

18

Cao, Z. Q.; Fu, J. M.; Wu, M. Z.; Hua, T.; Hu, H. B. Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density. Energy Storage Mater. 2021, 40, 10–21.

19

Yu, M. K.; Sun, Y. X.; Du, H. R.; Wang, C.; Li, W.; Dong, R. H.; Sun, H. X.; Geng, B. Y. Hollow porous carbon spheres doped with a low content of Co3O4 as anode materials for high performance lithium-ion batteries. Electrochim. Acta 2019, 317, 562–569.

20

Sennu, P.; Madhavi, S.; Aravindan, V.; Lee, Y. S. Co3O4 nanosheets as battery-type electrode for high-energy Li-ion capacitors: A sustained Li-storage via conversion pathway. ACS Nano 2020, 14, 10648–10654.

21

Lee, J. S.; Jo, M. S.; Saroha, R.; Jung, D. S.; Seon, Y. H.; Lee, J. S.; Kang, Y. C.; Kang, D. W.; Cho, J. S. Hierarchically well-developed porous graphene nanofibers comprising N-doped graphitic C-coated cobalt oxide hollow nanospheres as anodes for high-rate Li-ion batteries. Small 2020, 16, 2002213.

22

Fan, H. Y.; Yi, G. Y.; Tian, Q. M.; Zhang, X. X.; Xing, B. L.; Zhang, C. X.; Chen, L. J.; Zhang, Y. L. Hydrothermal-template synthesis and electrochemical properties of Co3O4/nitrogen-doped hemisphere-porous graphene composites with 3D heterogeneous structure. RSC Adv. 2020, 10, 36794–36805.

23

Kuai, L.; Geng, J.; Chen, C. Y.; Kan, E. J.; Liu, Y. D.; Wang, Q.; Geng, B. Y. A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew. Chem., Int. Ed. 2014, 53, 7547–7551.

24

Cai, G. R.; Zhang, W.; Jiao, L.; Yu, S. H.; Jiang, H. L. Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2017, 2, 791–802.

25

Chai, Y. J.; Du, Y. H.; Li, L.; Wang, N. Dual metal oxides interconnected by carbon nanotubes for high-capacity Li- and Na-ion batteries. Nanotechnology 2020, 31, 215402.

26

Zhang, Y. F.; Xie, M. H.; He, Y. B.; Zhang, Y. M.; Liu, L. D.; Hao, T. Q.; Ma, Y.; Shi, Y. F.; Sun, Z. J.; Liu, N. et al. Hybrid NiO/Co3O4 nanoflowers as high-performance anode materials for lithium-ion batteries. Chem. Eng. J. 2021, 420, 130469.

27

Huang, S. J.; Yang, L. W.; Xu, G. B.; Wei, T. Y.; Tian, J.; Liu, X.; Li, H. P.; Xiang, Z. Y.; Cao, J. X.; Wei, X. L. Hollow Co3O4@N-doped carbon nanocrystals anchored on carbon nanotubes for freestanding anode with superior Li/Na storage performance. Chem. Eng. J. 2021, 415, 128861.

28

Sun, H. X.; Du, H. R.; Yu, M. K.; Huang, K. F.; Yu, N.; Geng, B. Y. Vesicular Li3V2(PO4)3/C hollow mesoporous microspheres as an efficient cathode material for lithium-ion batteries. Nano Res. 2019, 12, 1937–1942.

29

Liu, Y.; Peng, Y. M.; Naschitzki, M.; Gewinner, S.; Schöllkopf, W.; Kuhlenbeck, H.; Pentcheva, R.; Roldan Cuenya, B. Surface oxygen vacancies on reduced Co3O4(100): Superoxide formation and ultra-low-temperature CO oxidation. Angew. Chem., Int. Ed. 2021, 60, 16514–16520.

30

Quast, T.; Aiyappa, H. B.; Saddeler, S.; Wilde, P.; Chen, Y. T.; Schulz, S.; Schuhmann, W. Single-entity electrocatalysis of individual “picked-and-dropped” Co3O4 nanoparticles on the tip of a carbon nanoelectrode. Angew. Chem., Int. Ed. 2021, 60, 3576–3580.

31

Xu, K. Q.; Shen, X. P.; Song, C. S.; Chen, H. Y.; Chen, Y.; Ji, Z. Y.; Yuan, A. H.; Yang, X. L.; Kong, L. R. Construction of rGO-encapsulated Co3O4-CoFe2O4 composites with a double-buffer structure for high-performance lithium storage. Small 2021, 17, 2101080.

32

Fang, L. B.; Bahlawane, N.; Sun, W. P.; Pan, H. G.; Xu, B. B.; Yan, M.; Jiang, Y. Z. Conversion-alloying anode materials for sodium ion batteries. Small 2021, 17, 2101137.

33

Sun, R.; Bai, Y.; Luo, M.; Qu, M. X.; Wang, Z. H.; Sun, W.; Sun, K. N. Enhancing polysulfide confinement and electrochemical kinetics by amorphous cobalt phosphide for highly efficient lithium-sulfur batteries. ACS Nano 2021, 15, 739–750.

34

Park, G. D.; Park, J. S.; Kim, J. K.; Kang, Y. C. Recent advances in heterostructured anode materials with multiple anions for advanced alkali-ion batteries. Adv. Energy Mater. 2021, 11, 2003058.

35

Lu, J. L.; Li, J.; Wan, J.; Han, X. Y.; Ji, P. Y.; Luo, S.; Gu, M. X.; Wei, D. P.; Hu, C. G. A facile strategy of in-situ anchoring of Co3O4 on N doped carbon cloth for an ultrahigh electrochemical performance. Nano Res. 2021, 14, 2410–2417.

36

Yao, Q. Q.; Gan, Y. M.; Ma, Z. J.; Qian, X. Y.; Cai, S. Z.; Zhao, Y.; Guan, L. H.; Huang, W. Approaching superior potassium storage of carbonaceous anode through a combined strategy of carbon hybridization and sulfur doping. Energy Environ. Mater. 2021.

37

Lim, K. R. G.; Handoko, A. D.; Nemani, S. K.; Wyatt, B.; Jiang, H. Y.; Tang, J. W.; Anasori, B.; Seh, Z. W. Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano 2020, 14, 10834–10864.

38

Huang, R. L.; Lin, J.; Zhou, J. H.; Fan, E. S.; Zhang, X. X.; Chen, R. J.; Wu, F.; Li, L. Hierarchical triple-shelled MnCo2O4 hollow microspheres as high-performance anode materials for potassium-ion batteries. Small 2021, 17, 2007597.

39

Meng, T.; Li, B.; Wang, Q. S.; Hao, J. N.; Huang, B. B.; Gu, F. L.; Xu, H. M.; Liu, P.; Tong, Y. X. Large-scale electric-field confined silicon with optimized charge-transfer kinetics and structural stability for high-rate lithium-ion batteries. ACS Nano 2020, 14, 7066–7076.

40

Shi, J. W.; Zu, L. H.; Gao, H. Y.; Hu, G. X.; Zhang, Q. Silicon-based self-assemblies for high volumetric capacity Li-ion batteries via effective stress management. Adv. Funct. Mater. 2020, 30, 2002980.

41

Zhang, S. L.; Guan, B. Y.; Wu, H. B.; Lou, X. W. D. Metal-organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nano-Micro Lett. 2018, 10, 44.

42

Zhu, J. K.; Tu, W. M.; Pan, H. F.; Zhang, H.; Liu, B.; Cheng, Y. P.; Deng, Z.; Zhang, H. N. Self-templating synthesis of Hollow Co3O4 nanoparticles embedded in N,S-dual-doped reduced graphene oxide for lithium ion batteries. ACS Nano 2020, 14, 5780–5787.

43

Zhang, R. H.; Li, Y.; Wang, M.; Li, D. W.; Zhou, J. J.; Xie, L.; Wang, T.; Tian, W.; Zhai, Y. J.; Gong, H. Y. et al. Super-assembled hierarchical CoO nanosheets-Cu foam composites as multi-level hosts for high-performance lithium metal anodes. Small 2021, 17, 2101301.

44

Du, H. R.; Huang, K. F.; Li, M.; Xia, Y. Y.; Sun, Y. X.; Yu, M. K.; Geng, B. Y. Gas template-assisted spray pyrolysis: A facile strategy to produce porous hollow Co3O4 with tunable porosity for high-performance lithium-ion battery anode materials. Nano Res. 2018, 11, 1490–1499.

45

Adekoya, D.; Chen, H.; Hoh, H. Y.; Gould, T.; Balogun, M. S. J. T.; Lai, C.; Zhao, H. J.; Zhang, S. Q. Hierarchical Co3O4@N-doped carbon composite as an advanced anode material for ultrastable potassium storage. ACS Nano 2020, 14, 5027–5035.

46

Liu, H. X.; Zhang, W. L.; Song, Y.; Li, L. L.; Zhang, C. W.; Wang, G. K. Superior rate mesoporous carbon sphere array composite via intercalation and conversion coupling mechanisms for potassium-ion capacitors. Adv. Funct. Mater. 2021, 31, 2107728.

Nano Research
Pages 6192-6199
Cite this article:
Zhou Y, Wang C, Chen F, et al. Synchronous constructing ion channels and confined space of Co3O4 anode for high-performance lithium-ion batteries. Nano Research, 2022, 15(7): 6192-6199. https://doi.org/10.1007/s12274-022-4281-y
Topics:

817

Views

33

Crossref

34

Web of Science

33

Scopus

5

CSCD

Altmetrics

Received: 27 January 2022
Revised: 23 February 2022
Accepted: 28 February 2022
Published: 12 April 2022
© Tsinghua University Press 2022
Return