AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dual-modality magnetic resonance/optical imaging-guided sonodynamic therapy of pancreatic cancer with metal–organic nanosonosensitizer

Yingli Chen1,2,§Bo Yin3,§Zhuang Liu2Han Wang4Zi Fu4Xiuru Ji4Wei Tang2( )Dalong Ni4( )Weijun Peng2( )
Shanghai Institution of Medical Imaging, Fudan University, Shanghai 200032, China
Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

§ Yingli Chen and Bo Yin contributed equally to this work.

Show Author Information

Graphical Abstract

A novel metal–organic sonosensitizers of Gd-PPNs was synthesized through two steps with magnetic resonance imaging (MRI) and fluorescence imaging (FLI) both available for guiding sonodynamic therapy (SDT) of pancreatic cancer.

Abstract

Sonodynamic therapy (SDT) has been more attractive to carry out oncology treatments in recent years. However, imaging-guided sonodynamic therapeutic nanomedicine is still a shortage in SDT development. In this work, we designed and fabricated an organic SDT system based on combination of 1,2,4,5-tetrakis(4-carboxyphenyl)-porphyrin (TCPP) and gadolinium(III) (Gd3+) creatively (Gd-PPNs). Gd3+ was traditionally used to be T1-weighted magnetic resonance imaging (MRI) contrast agent and TCPP was initiatively a fluorescence imaging organic media. Therefore, these new designed nanoparticles have immense potential to integrate MRI and FLI to visualize the Gd-PPNs accumulating and keeping in tumor for a long time, which could be applied for guidance of SDT on tumors in clinical practice. Importantly, excellent SDT efficiency under imaging guidance was verified both in vitro and in vivo in this work. Our findings suggested that Gd-PPNs, as innovative imaging and therapy combinational nanomedicines, were successfully synthesized and were proved to possess excellent imaging-guided sonodynamic therapeutic efficacy. Moreover, this new designed sonosensitizer had great biocompatibility to avoid unnecessary biotoxicity. Overall, this strategy shed light on the MRI/FLI-guidance and successfully induced pancreatic tumor growth inhibition by sonodynamic therapy.

Electronic Supplementary Material

Download File(s)
12274_2022_4284_MOESM1_ESM.pdf (1 MB)

References

1

Mizrahi, J. D.; Surana, R.; Valle, J. W.; Shroff, R. T. Pancreatic cancer. Lancet 2020, 395, 2008–2020.

2

Li, H. B.; Yang, Z. H.; Guo, Q. Q. Immune checkpoint inhibition for pancreatic ductal adenocarcinoma: Limitations and prospects: A systematic review. Cell Commun. Signal. 2021, 19, 117.

3

Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33.

4

Brown, Z. J.; Cloyd, J. M. Surgery for pancreatic cancer: Recent progress and future directions. Hepatobil. Surg. Nutr. 2021, 10, 376–378.

5

Wolfgang, C. L.; Herman, J. M.; Laheru, D. A.; Klein, A. P.; Erdek, M. A.; Fishman, E. K.; Hruban, R. H. Recent progress in pancreatic cancer. CA Cancer J. Clin. 2013, 63, 318–348.

6

Bliss, L. A.; Witkowski, E. R.; Yang, C. J.; Tseng, J. F. Outcomes in operative management of pancreatic cancer. J. Surg. Oncol. 2014, 110, 592–598.

7

Kuroki, M.; Hachimine, K.; Abe, H.; Shibaguchi, H.; Kuroki, M.; Maekawa, S. I.; Yanagisawa, J.; Kinugasa, T.; Tanaka, T.; Yamashita, Y. Sonodynamic therapy of cancer using novel sonosensitizers. Anticancer Res. 2007, 27, 3673–3677.

8

Li, G. Z.; Wang, S. P.; Deng, D. S.; Xiao, Z. S.; Dong, Z. L.; Wang, Z. P.; Lei, Q. F.; Gao, S.; Huang, G. X.; Zhang, E. P. et al. Fluorinated chitosan to enhance transmucosal delivery of sonosensitizer-conjugated catalase for sonodynamic bladder cancer treatment post-intravesical instillation. ACS Nano 2020, 14, 1586–1599.

9

Gong, F.; Cheng, L.; Yang, N. L.; Betzer, O.; Feng, L. Z.; Zhou, Q.; Li, Y. G.; Chen, R. H.; Popovtzer, R.; Liu, Z. Ultrasmall oxygen-deficient bimetallic oxide MnWOX nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. Adv. Mater. 2019, 31, 1900730.

10

Guo, X. J.; Wong, R. C. H.; Zhou, Y. M.; Ng, D. K. P.; Lo, P. C. A novel distyryl boron dipyrromethene with two functional tags for site-specific bioorthogonal photosensitisation towards targeted photodynamic therapy. Chem. Commun. 2019, 55, 13518–13521.

11

Saravanakumar, G.; Kim, J.; Kim, W. J. Reactive-oxygen-species-responsive drug delivery systems: Promises and challenges. Adv. Sci. 2017, 4, 1600124.

12

Xue, X. D.; Huang, Y.; Bo, R. N.; Jia, B.; Wu, H.; Yuan, Y.; Wang, Z. L.; Ma, Z.; Jing, D.; Xu, X. B. et al. Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nat. Commun. 2018, 9, 3653.

13

Gong, Z. R.; Dai, Z. F. Design and challenges of sonodynamic therapy system for cancer theranostics: From equipment to sensitizers. Adv. Sci. 2021, 8, 2002178.

14

Huang, J.; Liu, F. Q.; Han, X. X.; Zhang, L.; Hu, Z. Q.; Jiang, Q. Q.; Wang, Z. G.; Ran, H. T.; Wang, D.; Li, P. Nanosonosensitizers for highly efficient sonodynamic cancer theranostics. Theranostics 2018, 8, 6178–6194.

15

Liang, S.; Deng, X. R.; Ma, P. A.; Cheng, Z. Y.; Lin, J. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv. Mater. 2020, 32, 2003214.

16

Zhu, P.; Chen, Y.; Shi, J. L. Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. ACS Nano 2018, 12, 3780–3795.

17

Dai, C.; Zhang, S. J.; Liu, Z.; Wu, R.; Chen, Y. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano 2017, 11, 9467–9480.

18

Yan, S. J.; Lu, M.; Ding, X. Y.; Chen, F.; He, X. M.; Xu, C. Y.; Zhou, H.; Wang, Q.; Hao, L.; Zou, J. Z. HematoPorphyrin monomethyl ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy. Sci. Rep. 2016, 6, 31833.

19

Pan, X. T.; Bai, L. X.; Wang, H.; Wu, Q. Y.; Wang, H. Y.; Liu, S.; Xu, B. L.; Shi, X. H.; Liu, H. Y. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv. Mater. 2018, 30, 1800180.

20

Xu, F. Y.; Hu, M.; Liu, C. C.; Choi, S. K. Yolk-structured multifunctional up-conversion nanoparticles for synergistic photodynamic-sonodynamic antibacterial resistance therapy. Biomater. Sci. 2017, 5, 678–685.

21

Fan, W. P.; Huang, P.; Chen, X. Y. Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6488–6519.

22

Li, X. S.; Lee, S.; Yoon, J. Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem. Soc. Rev. 2018, 47, 1174–1188.

23

Li, Y. X.; An, H. X.; Wang, X. B.; Wang, P.; Qu, F.; Jiao, Y.; Zhang, K.; Liu, Q. H. Ultrasound-triggered release of sinoporphyrin sodium from liposome-microbubble complexes and its enhanced sonodynamic toxicity in breast cancer. Nano Res. 2018, 11, 1038–1056.

24

Harada, Y.; Ogawa, K.; Irie, Y.; Endo, H.; Feril, L. B. Jr.; Uemura, T.; Tachibana, K. Ultrasound activation of TiO2 in melanoma tumors. J. Control. Release 2011, 149, 190–195.

25

Yamaguchi, S.; Kobayashi, H.; Narita, T.; Kanehira, K.; Sonezaki, S.; Kudo, N.; Kubota, Y.; Terasaka, S.; Houkin, K. Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: Comparison of cytotoxic mechanism with photodynamic therapy. Ultrason. Sonochem. 2011, 18, 1197–1204.

26

You, D. G.; Deepagan, V. G.; Um, W.; Jeon, S.; Son, S.; Chang, H.; Yoon, H. I.; Cho, Y. W.; Swierczewska, M.; Lee, S. et al. ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci. Rep. 2016, 6, 23200.

27

Xu, W. W.; Dong, C. H.; Hu, H.; Qian, X. Q.; Chang, L.; Jiang, Q.; Yu, L. D.; Chen, Y.; Zhou, J. Q. Engineering janus chemoreactive nanosonosensitizers for bilaterally augmented sonodynamic and chemodynamic cancer nanotherapy. Adv. Funct. Mater. 2021, 31, 2103134.

28

Lu, S. T.; Feng, W.; Dong, C. H.; Song, X. R.; Gao, X.; Guo, J. H.; Chen, Y.; Hu, Z. Q. Photosynthetic oxygenation-augmented sonodynamic nanotherapy of hypoxic tumors. Adv. Healthc. Mater. 2022, 11, 2102135.

29

Xu, Y. F.; Zhang, C.; Zhang, L. X.; Zhang, X. H.; Yao, H. L.; Shi, J. L. Pd-catalyzed instant hydrogenation of TiO2 with enhanced photocatalytic performance. Energy Environ. Sci. 2016, 9, 2410–2417.

30

Yumita, N.; Okuyama, N.; Sasaki, K.; Umemura, S. I. Sonodynamic therapy on chemically induced mammary tumor: Pharmacokinetics, tissue distribution and sonodynamically induced antitumor effect of gallium-porphyrin complex ATX-70. Cancer Chemother. Pharmacol. 2007, 60, 891–897.

31

Yumita, N.; Okudaira, K.; Momose, Y.; Umemura, S. I. Sonodynamically induced apoptosis and active oxygen generation by gallium-porphyrin complex, ATX-70. Cancer Chemother. Pharmacol. 2010, 66, 1071–1078.

32

Yumita, N.; Iwase, Y.; Nishi, K.; Komatsu, H.; Takeda, K.; Onodera, K.; Fukai, T.; Ikeda, T.; Umemura, S. I.; Okudaira, K. et al. Involvement of reactive oxygen species in sonodynamically induced apoptosis using a novel porphyrin derivative. Theranostics 2012, 2, 880–888.

33

Chen, H. J.; Zhou, X. B.; Gao, Y.; Zheng, B. Y.; Tang, F. X.; Huang, J. D. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discov. Today 2014, 19, 502–509.

34

Dong, C. H.; Jiang, Q.; Qian, X. Q.; Wu, W. C.; Wang, W. P.; Yu, L. D.; Chen, Y. A self-assembled carrier-free nanosonosensitizer for photoacoustic imaging-guided synergistic chemo-sonodynamic cancer therapy. Nanoscale 2020, 12, 5587–5600.

35

Wood, A. K. W.; Sehgal, C. M. A review of low-intensity ultrasound for cancer therapy. Ultrasound Med. Biol. 2015, 41, 905–928.

36

Qian, X. Q.; Zheng, Y. Y.; Chen, Y. Micro/nanoparticle-augmented sonodynamic therapy (SDT): Breaking the depth shallow of photoactivation. Adv. Mater. 2016, 28, 8097–8129.

37

Ma, A. Q.; Chen, H. Q.; Cui, Y. H.; Luo, Z. Y.; Liang, R. J.; Wu, Z. H.; Chen, Z.; Yin, T.; Ni, J.; Zheng, M. B. et al. Metalloporphyrin complex-based nanosonosensitizers for deep-tissue tumor theranostics by noninvasive sonodynamic therapy. Small 2019, 15, 1804028.

38

Chen, W. D.; Zhao, J. K.; Hou, M. F.; Yang, M.; Yi, C. Q. Gadolinium-porphyrin based polymer nanotheranostics for fluorescence/magnetic resonance imaging guided photodynamic therapy. Nanoscale 2021, 13, 16197–16206.

39

Zhu, W. J.; Chen, Q.; Jin, Q. T.; Chao, Y.; Sun, L. L.; Han, X.; Xu, J.; Tian, L. L.; Zhang, J. L.; Liu, T. et al. Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. Nano Res. 2021, 14, 212–221.

40

Huang, X.; Fan, C. Q.; Zhu, H. H.; Le, W. J.; Cui, S. B.; Chen, X.; Li, W.; Zhang, F. L.; Huang, Y.; Shi, D. L. et al. Glypican-1-antibody-conjugated Gd-Au nanoclusters for FI/MRI dual-modal targeted detection of pancreatic cancer. Int. J. Nanomedicine 2018, 13, 2585–2599.

41

Ren, S.; Song, L. N.; Tian, Y.; Zhu, L.; Guo, K.; Zhang, H. F.; Wang, Z. Q. Emodin-conjugated PEGylation of Fe3O4 nanoparticles for FI/MRI dual-modal imaging and therapy in pancreatic cancer. Int. J. Nanomedicine 2021, 16, 7463–7478.

42

Singhi, A. D.; Koay, E. J.; Chari, S. T.; Maitra, A. Early detection of pancreatic cancer: Opportunities and challenges. Gastroenterology 2019, 156, 2024–2040.

43

Del Chiaro, M.; Verbeke, C. S.; Kartalis, N.; Mucelli, R. P.; Gustafsson, P.; Hansson, J.; Haas, S. L.; Segersvärd, R.; Andren-Sandberg, Å.; Löhr, J. M. Short-term results of a magnetic resonance imaging-based Swedish screening program for individuals at risk for pancreatic cancer. JAMA Surg. 2015, 150, 512–518.

44

Kim, B. H.; Lee, N.; Kim, H.; An, K.; Park, Y. I.; Choi, Y.; Shin, K.; Lee, Y.; Kwon, S. G.; Na, H. B. et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 2011, 133, 12624–12631.

45

Wang, Q. Y.; Liang, Z. Y.; Li, F. Y.; Lee, J.; Low, L. E.; Ling, D. S. Dynamically switchable magnetic resonance imaging contrast agents. Exploration 2021, 1, 20210009.

46

Zhidkov, I. S.; Kukharenko, A. I.; Antropov, N. O.; Kravtsov, E. A.; Makarova, M. V.; Cholakh, S. O.; Kurmaev, E. Z. X-ray photoelectron spectroscopy study of Cr/[Pd/Gd/Pd/Fe] multilayered nanostructures. Thin Solid Films 2020, 709, 138251.

47

Liang, S.; Liu, B.; Xiao, X.; Yuan, M.; Yang, L.; Ma, P. A.; Cheng, Z. Y.; Lin, J. A robust narrow bandgap vanadium tetrasulfide sonosensitizer optimized by charge separation engineering for enhanced sonodynamic cancer therapy. Adv. Mater. 2021, 33, 2101467.

48

Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815.

49
Ibrahim, M. A.; Hazhirkarzar, B.; Dublin, A. B. Gadolinium magnetic resonance imaging. In StatPearls[Internet]. StatPearls Publishing: Treasure Island.
50

Zheng, X. Y.; Zhao, K.; Tang, J. L.; Wang, X. Y.; Li, L. D.; Chen, N. X.; Wang, Y. J.; Shi, S.; Zhang, X. D.; Malaisamy, S. et al. Gd-dots with strong ligand-water interaction for ultrasensitive magnetic resonance renography. ACS Nano 2017, 11, 3642–3650.

51

Tullio, C.; Salvioni, L.; Bellini, M.; Degrassi, A.; Fiandra, L.; D'Arienzo, M.; Garbujo, S.; Rotem, R.; Testa, F.; Prosperi, D. et al. Development of an effective tumor-targeted contrast agent for magnetic resonance imaging based on Mn/H-ferritin nanocomplexes. ACS Appl. Bio Mater. 2021, 4, 7800–7810.

52

Wang, J. J. Tripterine and miR-184 show synergy to suppress breast cancer progression. Biochem. Biophys. Res. Commun. 2021, 561, 19–25.

Nano Research
Pages 6340-6347
Cite this article:
Chen Y, Yin B, Liu Z, et al. Dual-modality magnetic resonance/optical imaging-guided sonodynamic therapy of pancreatic cancer with metal–organic nanosonosensitizer. Nano Research, 2022, 15(7): 6340-6347. https://doi.org/10.1007/s12274-022-4284-8
Topics:

909

Views

6

Crossref

6

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 09 January 2022
Revised: 28 February 2022
Accepted: 01 March 2022
Published: 04 April 2022
© Tsinghua University Press 2022
Return