AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Co-delivery of luteolin and TGF-β1 plasmids with ROS-responsive virus-inspired nanoparticles for microenvironment regulation and chemo-gene therapy of intervertebral disc degeneration

Yifan Ding1,§Huan Wang1,§Yunyun Wang3Long Li1Jiahui Ding2Caiyan Yuan2Tao Xu1Haoran Xu1Hui Xie4Ning Zhu5,6Xin Hu6,7Huang Fang1( )Songwei Tan2( )
Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Department of Cardiology, the Fifth Hospital in Wuhan, Wuhan 430030, China
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China

§ Yifan Ding and Huan Wang contributed equally to this work.

Show Author Information

Graphical Abstract

A reactive oxygen species (ROS)-responsive nanoplatform (LUT-pTGF-β1@PBC) was constructed for LUT-TGF-β1 plasmid combinatorial therapy of intervertebral disc degeneration (IDD).

Abstract

Intervertebral disc degeneration (IDD) is closely related to inflammation and imbalance of synthesis/catabolism of extracellular matrix (ECM) in intervertebral disc (IVD). Considering this, luteolin (LUT), a kind of natural flavonoid with good anti-inflammatory effect and TGF-β1 (a gene that promotes the regeneration of ECM) plasmid was co-loaded and co-delivered to nucleus pulposus cells (NPCs). Reactive oxygen species (ROS) responsive cationic copolymer, poly(β-amino ester)-poly(ε-caprolactone) (PBC), with high plasmid DNA (pDNA) compression affinity was synthesized. It can self-assemble into nano-sized polyplexes (pDNA@PBC) with virus-inspired structure and function through which it can transfect pDNA into NPCs with very high efficiency and negligible cytotoxicity. LUT was encapsulated in the hydrophobic core of pDNA@PBC. The co-delivery system, LUT-pTGF-β1@PBC, could enhance the cellular uptake of NPCs and manifest excellent sustained drug release in IVD. Real time quantitative polymerase chain reaction (RT-qPCR) and Western blot experiments reveal that the co-delivery system could inhibit inflammation in NPCs and restore the balance of anabolism and catabolism in vitro by activating TGF/SMAD3 and inhibiting NF-kB/p65. Moreover, LUT-pTGF-β1@PBC retards IDD in vivo as detected by radiological and histological methods with good biosafety in rats. LUT-pTGF-β1@PBC may be a promising option for the treatment of IDD.

Electronic Supplementary Material

Download File(s)
12274_2022_4285_MOESM1_ESM.pdf (1.4 MB)

References

1

Andersson, G. B. J. Epidemiological features of chronic low-back pain. Lancet 1999, 354, 581–585.

2

Luoma, K.; Riihimaki, H.; Luukkonen, R.; Raininko, R.; Viikari-Juntura, E.; Lamminen, A. Low back pain in relation to lumbar disc degeneration. Spine 2000, 25, 487–492.

3

Clouet, J.; Vinatier, C.; Merceron, C.; Pot-Vaucel, M.; Hamel, O.; Weiss, P.; Grimandi, G.; Guicheux, J. The intervertebral disc: From pathophysiology to tissue engineering. Joint Bone Spine 2009, 76, 614–618.

4

Molinos, M.; Almeida, C. R.; Caldeira, J.; Cunha, C.; Gonçalves, R. M.; Barbosa, M. A. Inflammation in intervertebral disc degeneration and regeneration. J. Roy. Soc. Interface 2015, 12, 20150429.

5

Cunha, C.; Silva, A. J.; Pereira, P.; Vaz, R.; Gonçalves, R. M.; Barbosa, M. A. The inflammatory response in the regression of lumbar disc herniation. Arthritis Res. Ther. 2018, 20, 251.

6

Wu, P. H.; Kim, H. S.; Jang, I. T. Intervertebral disc diseases PART 2: A review of the current diagnostic and treatment strategies for intervertebral disc disease. Int. J. Mol. Sci. 2020, 21, 2135.

7

Frapin, L.; Clouet, J.; Delplace, V.; Fusellier, M.; Guicheux, J.; Le Visage, C. Lessons learned from intervertebral disc pathophysiology to guide rational design of sequential delivery systems for therapeutic biological factors. Adv. Drug Deliv. Rev. 2019, 149–150, 49–71.

8

Novais, E. J.; Tran, V. A.; Johnston, S. N.; Darris, K. R.; Roupas, A. J.; Sessions, G. A.; Shapiro, I. M.; Diekman, B. O.; Risbud, M. V. Long-term treatment with senolytic drugs dasatinib and quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat. Commun. 2021, 12, 5213.

9

Nishida, K.; Kang, J. D.; Gilbertson, L. G.; Moon, S. H.; Suh, J. K.; Vogt, M. T.; Robbins, P. D.; Evans, C. H. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: An in vivo study of adenovirus-mediated transfer of the human transforming growth factor β1 encoding gene. Spine 1999, 24, 2419–2425.

10

Wang, S. K.; Xue, Y. L.; Cepko, C. L. Microglia modulation by TGF-β1 protects cones in mouse models of retinal degeneration. J. Clin. Invest. 2020, 130, 4360–4369.

11

Abulimiti, A.; Lai, M. S. L.; Chuen-Chang, R. Applications of adeno-associated virus vector-mediated gene delivery for neurodegenerative diseases and psychiatric diseases: Progress, advances, and challenges. Mech. Ageing Dev. 2021, 199, 111549.

12

Zheng, G.; Pan, Z. Y.; Zhan, Y.; Tang, Q.; Zheng, F. H.; Zhou, Y. F.; Wu, Y. S.; Zhou, Y. L.; Chen, D. H.; Chen, J. X. et al. TFEB protects nucleus pulposus cells against apoptosis and senescence via restoring autophagic flux. Osteoarthritis Cartilage 2019, 27, 347–357.

13

Farhang, N.; Ginley-Hidinger, M.; Berrett, K. C.; Gertz, J.; Lawrence, B.; Bowles, R. D. Lentiviral CRISPR epigenome editing of inflammatory receptors as a gene therapy strategy for disc degeneration. Hum. Gene Ther. 2019, 30, 1161–1175.

14
Servick, K. Gene Therapy Clinical Trial Halted as Cancer Risk Surfaces [Online]. https://www.science.org/news/2021/08/gene-therapy-clinical-trial-halted-cancer-risk-surfaces (accessed Aug 11, 2021).
15

Nguyen, G. N.; Everett, J. K.; Kafle, S.; Roche, A. M.; Raymond, H. E.; Leiby, J.; Wood, C.; Assenmacher, C. A.; Merricks, E. P.; Long, C. T. et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat. Biotechnol. 2021, 39, 47–55.

16

Wallach, C. J.; Kim, J. S.; Sobajima, S.; Lattermann, C.; Oxner, W. M.; McFadden, K.; Robbins, P. D.; Gilbertson, L. G.; Kang, J. D. Safety assessment of intradiscal gene transfer: A pilot study. Spine J. 2006, 6, 107–112.

17

Sainz-Ramos, M.; Gallego, I.; Villate-Beitia, I.; Zarate, J.; Maldonado, I.; Puras, G.; Pedraz, J. L. How far are non-viral vectors to come of age and reach clinical translation in gene therapy? Int. J. Mol. Sci. 2021, 22, 7545.

18

Uzieliene, I.; Kalvaityte, U.; Bernotiene, E.; Mobasheri, A. Non-viral gene therapy for osteoarthritis. Front. Bioeng. Biotechnol. 2020, 8, 618399.

19

Mashel, T. V.; Tarakanchikova, Y. V.; Muslimov, A. R.; Zyuzin, M. V.; Timin, A. S.; Lepik, K. V.; Fehse, B. Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials 2020, 258, 120282.

20

Feng, G. J.; Chen, H. Y.; Li, J. J.; Huang, Q.; Gupte, M. J.; Liu, H.; Song, Y. M.; Ge, Z. S. Gene therapy for nucleus pulposus regeneration by heme oxygenase-1 plasmid DNA carried by mixed polyplex micelles with thermo-responsive heterogeneous coronas. Biomaterials 2015, 52, 1–13.

21

Feng, G. J.; Zhang, Z. P.; Dang, M.; Zhang, X. J.; Doleyres, Y.; Song, Y. M.; Chen, D.; Ma, P. X. Injectable nanofibrous spongy microspheres for NR4A1 plasmid DNA transfection to reverse fibrotic degeneration and support disc regeneration. Biomaterials 2017, 131, 86–97.

22

Wu, H. Y.; Zhong, D.; Zhang, Z. J.; Li, Y. C.; Zhang, X.; Li, Y. K.; Zhang, Z. Z.; Xu, X. H.; Yang, J.; Gu, Z. W. Bioinspired artificial tobacco mosaic virus with combined oncolytic properties to completely destroy multidrug-resistant cancer. Adv. Mater. 2020, 32, 2005181.

23

Zou, Y.; Zheng, M.; Yang, W. J.; Meng, F. H.; Miyata, K.; Kim, H. J.; Kataoka, K.; Zhong, Z. Y. Virus-mimicking chimaeric polymersomes boost targeted cancer siRNA therapy in vivo. Adv. Mater. 2017, 29, 1703285.

24

Zhuang, R.; Chen, M. Q.; Zhou, Y. H.; Cheng, W. J.; Zhang, T. H.; Ni, Y. F.; Guo, C. H.; Tu, J. S.; Jiang, L. Virus-mimicking liposomal system based on dendritic lipopeptides for efficient prevention ischemia/reperfusion injury in the mouse liver. ACS Macro Lett. 2021, 10, 215–222.

25

Cordeiro, R. A.; Serra, A.; Coelho, J. F. J.; Faneca, H. Poly(β-amino ester)-based gene delivery systems: From discovery to therapeutic applications. J. Control. Release 2019, 310, 155–187.

26

Bus, T.; Traeger, A.; Schubert, U. S. The great escape: How cationic polyplexes overcome the endosomal barrier. J. Mater. Chem. B 2018, 6, 6904–6918.

27

Somiya, M.; Liu, Q. S.; Kuroda, S. Current progress of virus-mimicking nanocarriers for drug delivery. Nanotheranostics 2017, 1, 415–429.

28

Chen, S.; Liu, S.; Ma, K.; Zhao, L.; Lin, H.; Shao, Z. TGF-β signaling in intervertebral disc health and disease. Osteoarthritis Cartilage 2019, 27, 1109–1117.

29

Tran, C. M.; Shapiro, I. M.; Risbud, M. V. Molecular regulation of CCN2 in the intervertebral disc: Lessons learned from other connective tissues. Matrix Biol. 2013, 32, 298–306.

30

Zhu, L. G.; Yu, C. S.; Zhang, X. F.; Yu, Z. B.; Zhan, F. Y.; Yu, X.; Wang, S. R.; He, F.; Han, Y. S.; Zhao, H. The treatment of intervertebral disc degeneration using traditional Chinese medicine. J. Ethnopharmacol. 2020, 263, 113117.

31

Wuertz, K.; Quero, L.; Sekiguchi, M.; Klawitter, M.; Nerlich, A.; Konno, S. I.; Kikuchi, S. I.; Boos, N. The red wine polyphenol resveratrol shows promising potential for the treatment of nucleus pulposus-mediated pain in vitro and in vivo. Spine 2011, 36, E1373–E1384.

32

Klawitter, M.; Quero, L.; Klasen, J.; Liebscher, T.; Nerlich, A.; Boos, N.; Wuertz, K. Triptolide exhibits anti-inflammatory, anti-catabolic as well as anabolic effects and suppresses TLR expression and MAPK activity in IL-1β treated human intervertebral disc cells. Eur. Spine J. 2012, 21, 850–859.

33

Wang, H.; Ding, Y.; Zhang, W.; Wei, K.; Pei, Y.; Zou, C.; Zhang, C.; Ding, J.; Fang, H.; Tan, S. Oxymatrine liposomes for intervertebral disc treatment: Formulation, in vitro and vivo assessments. Drug Des. Devel. Ther. 2020, 14, 921–931.

34

Wei, K.; Dai, J.; Wang, Z. G.; Pei, Y. P.; Chen, Y.; Ding, Y. F.; Ding, Q.; Ahati, P.; Zhou, X. Z.; Wang, H. et al. Oxymatrine suppresses IL-1β-induced degradation of the nucleus pulposus cell and extracellular matrix through the TLR4/NF-κB signaling pathway. Exp. Biol. Med. 2020, 245, 532–541.

35

Aziz, N.; Kim, M. Y.; Cho, J. Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018, 225, 342–358.

36

Lin, J. L.; Chen, J. X.; Zhang, Z. J.; Xu, T. Z.; Shao, Z. X.; Wang, X. B.; Ding, Y. Z.; Tian, N. F.; Jin, H. M.; Sheng, S. R. et al. Luteoloside inhibits IL-1β-induced apoptosis and catabolism in nucleus pulposus cells and ameliorates intervertebral disk degeneration. Front. Pharmacol. 2019, 10, 868.

37

Labet, M.; Thielemans, W. Synthesis of polycaprolactone: A review. Chem. Soc. Rev. 2009, 38, 3484–3504.

38

Tao, W. H.; He, Z. G. ROS-responsive drug delivery systems for biomedical applications. Asian J. Pharm. Sci. 2018, 13, 101–112.

39

Raza, A.; Hayat, U.; Rasheed, T.; Bilal, M.; Iqbal, H. M. N. Redox-responsive nano-carriers as tumor-targeted drug delivery systems. Eur. J. Med. Chem. 2018, 157, 705–715.

40

Gao, X. Q.; Jin, Z.; Tan, X. Y.; Zhang, C.; Zou, C. M.; Zhang, W.; Ding, J. H.; Das, B. C.; Severinov, K.; Hitzeroth, I. I. et al. Hyperbranched poly(β-amino ester) based polyplex nanopaticles for delivery of CRISPR/Cas9 system and treatment of HPV infection associated cervical cancer. J. Control. Release 2020, 321, 654–668.

41

Liu, Y. H.; Huang, W. J.; Zhu, N.; Guo, K. Direct synthesis of thiol-terminated poly(ε-caprolactone): A study on polymerization kinetics, mechanism and rare earth phenolates’ structure−activity relationship. RSC Adv. 2017, 7, 37412–37418.

42

Liu, Y. H.; Yin, F.; Hu, X.; Zhu, N.; Guo, K. Protecting-group-free synthesis of thiol-functionalized degradable polyesters. Polym. Chem. 2021, 12, 1749–1757.

43

Issy, A. C.; Castania, V.; Castania, M.; Salmon, C. E. G.; Nogueira-Barbosa, M. H.; Bel, E.; Defino, H. L. A. Experimental model of intervertebral disc degeneration by needle puncture in Wistar rats. Braz. J. Med. Biol. Res. 2013, 46, 235–244.

44

Qian, J. L.; Ge, J.; Yan, Q.; Wu, C. H.; Yang, H. L.; Zou, J. Selection of the optimal puncture needle for induction of a rat intervertebral disc degeneration model. Pain Physician 2019, 22, 353–360.

45

Pfirrmann, C. W. A.; Metzdorf, A.; Zanetti, M.; Hodler, J.; Boos, N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001, 26, 1873–1878.

46

Luo, C.; Sun, J.; Liu, D.; Sun, B. J.; Miao, L.; Musetti, S.; Li, J.; Han, X. P.; Du, Y. Q.; Li, L. et al. Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 2016, 16, 5401–5408.

47

Feng, C. C.; Yang, M. H.; Lan, M. H.; Liu, C.; Zhang, Y.; Huang, B.; Liu, H.; Zhou, Y. ROS: Crucial intermediators in the pathogenesis of intervertebral disc degeneration. Oxid. Med. Cell. Longev. 2017, 2017, 5601593.

48

Peng, Y. Z.; Qing, X. C.; Shu, H. Y.; Tian, S.; Yang, W. B.; Chen, S. F.; Lin, H.; Lv, X.; Zhao, L.; Chen, X. et al. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration. Biomater. Transl. 2021, 2, 91–142.

49

Xie, C. L.; Ma, H. W.; Shi, Y. F.; Li, J. L.; Wu, H. Q.; Wang, B.; Shao, Z. X.; Huang, C. G.; Chen, J. X.; Sun, L. J. et al. Cardamonin protects nucleus pulposus cells against IL-1β-induced inflammation and catabolism via Nrf2/NF-κB axis. Food Funct. 2021, 12, 2703–2714.

50

Liu, J. W.; Jiang, T. M.; He, M. W.; Fang, D. P.; Shen, C.; Le, Y. G.; He, M. L.; Zhao, J. M.; Zheng, L. Andrographolide prevents human nucleus pulposus cells against degeneration by inhibiting the NF-κB pathway. J. Cell. Physiol. 2019, 234, 9631–9639.

Nano Research
Pages 8214-8227
Cite this article:
Ding Y, Wang H, Wang Y, et al. Co-delivery of luteolin and TGF-β1 plasmids with ROS-responsive virus-inspired nanoparticles for microenvironment regulation and chemo-gene therapy of intervertebral disc degeneration. Nano Research, 2022, 15(9): 8214-8227. https://doi.org/10.1007/s12274-022-4285-7
Topics:

983

Views

15

Crossref

13

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 17 January 2022
Revised: 01 March 2022
Accepted: 01 March 2022
Published: 11 May 2022
© Tsinghua University Press 2022
Return