AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Morphology-controlled porphyrin nanocrystals with enhanced photocatalytic hydrogen production

Ronghui Cao2Jinghan Wang2Yusen Li2Jiajie Sun1( )Feng Bai2,3( )
School of Physics and Electronics, Henan University, Kaifeng 475004, China
Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
Show Author Information

Graphical Abstract

Morphology-controlled Pt(II) meso-tetra (4-carboxyphenyl) porphine (PtTCPP) nanocrystals were synthetized byself-assembly through adjusting experiment conditions to synergize noncovalent bond interactions betweenmolecules. Nanocrystals exhibit enhanced and morphology-dependent photocatalytic activity, due to differentmolecular dipoles and energy band structure produced by different packing patterns.

Abstract

Molecular self-assembly is a natured-inspired strategy to integrate individual functional molecules into supramolecular nanostructured materials through noncovalent bond interactions for solar to fuel conversion. However, the design and engineering of the morphology, size, and orderly stacking of supramolecular nanostructures remain a great challenge. In this study, regular porphyrin nanocrystals with different orderly stacked structures are synthesized through noncovalent self-assembly of Pt(II) meso-tetra (4-carboxyphenyl) porphine (PtTCPP), using surfactants with different electronegativity. The synergy of noncovalent bond interactions between porphyrin molecules, and between porphyrin molecules and surfactants resulted in different molecular packing patterns. Due to the spatial ordering of PtTCPP molecules, the different nanocrystals exhibit both collective optical properties and morphology-dependent activities in photocatalytic hydrogen production. The measurements of the photodeposition of dual cocatalysts showed that the photogenerated electrons and holes selectively aggregated at different active sites, revealing separation pathways and directional transfer of photogenerated electrons and holes in the assemblies. This study provides a new strategy to exert rational control over porphyrin self-assembly nanocrystals for highly efficient water splitting.

Electronic Supplementary Material

Download File(s)
12274_2022_4286_MOESM1_ESM.pdf (1.8 MB)

References

1

Dumele, O.; Chen, J. H.; Passarelli, J. V.; Stupp, S. I. Supramolecular energy materials. Adv. Mater. 2020, 32, 1907247.

2

Mirkovic, T.; Ostroumov, E. E.; Anna, J. M.; van Grondelle, R.; Govindjee; Scholes, G. D. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 2017, 117, 249–293.

3

Pochan, D.; Scherman, O. Introduction: Molecular self-assembly. Chem. Rev. 2021, 121, 13699–13700.

4

Chen, P. Z.; Weng, Y. X.; Niu, L. Y.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Light-harvesting systems based on organic nanocrystals to mimic chlorosomes. Angew. Chem., Int. Ed. 2016, 55, 2759–2763.

5

Ariga, K.; Jia, X. F.; Song, J. W.; Hill, J. P.; Leong, D. T.; Jia, Y.; Li, J. B. Nanoarchitectonics beyond self-assembly: Challenges to create bio-like hierarchic organization. Angew. Chem., Int. Ed. 2020, 59, 15424–15446.

6

Guo, Y. B.; Xu, L.; Liu, H. B.; Li, Y. J.; Che, C. M.; Li, Y. L. Self-assembly of functional molecules into 1D crystalline nanostructures. Adv. Mater. 2015, 27, 985–1013.

7

Rosenne, S.; Grinvald, E.; Shirman, E.; Neeman, L.; Dutta, S.; Bar-Elli, O.; Ben-Zvi, R.; Oksenberg, E.; Milko, P.; Kalchenko, V. et al. Self-assembled organic nanocrystals with strong nonlinear optical response. Nano Lett. 2015, 15, 7232–7237.

8

Sirohiwal, A.; Neese, F.; Pantazis, D. A. Protein matrix control of reaction center excitation in photosystem II. J. Am. Chem. Soc. 2020, 142, 18174–18190.

9

Li, Z. L.; Lin, Z. Q. Self-assembly of bolaamphiphiles into 2D nanosheets via synergistic and meticulous tailoring of multiple noncovalent interactions. ACS Nano 2021, 15, 3152–3160.

10

Li, J. Q.; Luo, W. D.; Zhang, S. Q.; Ma, C. Y.; Xiao, X. W.; Duan, W. B.; Zeng, Q. D. The effect of multiple pairs of meta-dicarboxyl groups on molecular self-assembly and the selective adsorption of coronene by hydrogen bonding and van der Waals forces. Nano Res. 2022, 15, 1691–1697.

11

Hecht, M.; Würthner, F. Supramolecularly engineered J-aggregates based on perylene bisimide dyes. Acc. Chem. Res. 2021, 54, 642–653.

12

Amabilino, D. B.; Smith, D. K.; Steed, J. W. Supramolecular materials. Chem. Soc. Rev. 2017, 46, 2404–2420.

13

Zhang, C. C.; Chen, P. L.; Dong, H. L.; Zhen, Y. G.; Liu, M. H.; Hu, W. P. Porphyrin supramolecular 1D structures via surfactant-assisted self-assembly. Adv. Mater. 2015, 27, 5379–5387.

14

Rajora, M. A.; Lou, J. W. H.; Zheng, G. Advancing porphyrin’s biomedical utility via supramolecular chemistry. Chem. Soc. Rev. 2017, 46, 6433–6469.

15

Wang, J. H.; Gao, S. Q.; Wang, X.; Zhang, H. Z.; Ren, X. T.; Liu, J. W.; Bai, F. Self-assembled manganese phthalocyanine nanoparticles with enhanced peroxidase-like activity for anti-tumor therapy. Nano Res. 2022, 15, 2347–2354.

16

Sun, Y.; Chen, M. L.; Yang, D.; Qin, W. B.; Quan, G. L.; Wu, C. B.; Pan, X. Self-assembly nanomicelle-microneedle patches with enhanced tumor penetration for superior chemo-photothermal therapy. Nano Res. 2022, 15, 2335–2346.

17

Jin, J.; Yang, F.; Li, B.; Liu, D.; Wu, L. H.; Li, Y.; Gu, N. Temperature-regulated self-assembly of lipids at free bubbles interface: A green and simple method to prepare micro/nano bubbles. Nano Res. 2020, 13, 999–1007.

18

Wang, D.; Niu, L. J.; Qiao, Z. Y.; Cheng, D. B.; Wang, J. F.; Zhong, Y.; Bai, F.; Wang, H.; Fan, H. Y. Synthesis of self-assembled porphyrin nanoparticle photosensitizers. ACS Nano 2018, 12, 3796–3803.

19

Li, P.; Xu, G. J.; Wang, N. N.; Guan, B.; Zhu, S. Q.; Chen, P. L.; Liu, M. H. 0D, 1D, and 2D supramolecular nanoassemblies of a porphyrin: Controllable assembly, and dimensionality-dependent catalytic performances. Adv. Funct. Mater. 2021, 31, 2100367.

20

Wang, J. F.; Zhong, Y.; Wang, L.; Zhang, N.; Cao, R. H.; Bian, K. F.; Alarid, L.; Haddad, R. E.; Bai, F.; Fan, H. Y. Morphology-controlled synthesis and metalation of porphyrin nanoparticles with enhanced photocatalytic performance. Nano Lett. 2016, 16, 6523–6528.

21

Cao, R. H.; Wang, G. Y.; Ren, X. T.; Duan, P. C.; Wang, L.; Li, Y. S.; Chen, X.; Zhu, R.; Jia, Y.; Bai, F. Self-assembled porphyrin nanoleaves with unique crossed transportation of photogenerated carriers to enhance photocatalytic hydrogen production. Nano Lett. 2022, 22, 157–163.

22

Kato, K.; Shinoda, T.; Nagao, R.; Akimoto, S.; Suzuki, T.; Dohmae, N.; Chen, M.; Allakhverdiev, S. I.; Shen, J. R.; Akita, F. et al. Structural basis for the adaptation and function of chlorophyll f in photosystem I. Nat. Commun. 2020, 11, 238.

23

Otsuki, J. Supramolecular approach towards light-harvesting materials based on porphyrins and chlorophylls. J. Mater. Chem. A 2018, 6, 6710–6753.

24

Pan, J. N.; Kang, L. T.; Huang, P.; Jia, Z. Y.; Liu, J. J.; Yao, J. N. The controllable synthesis of ultrafine one-dimensional small-molecule semiconducting nanocrystals in surfactant-assisted wet chemical reactions and their confinement effect. J. Mater. Chem. C 2017, 5, 6377–6385.

25

Zhang, Z.; Kim, D. S.; Lin, C. Y.; Zhang, H. C.; Lammer, A. D.; Lynch, V. M.; Popov, I.; Miljanić, O. Š.; Anslyn, E. V.; Sessler, J. L. Expanded porphyrin-anion supramolecular assemblies: Environmentally responsive sensors for organic solvents and anions. J. Am. Chem. Soc. 2015, 137, 7769–7774.

26

Hu, J. S.; Guo, Y. G.; Liang, H. P.; Wan, L. J.; Jiang, L. Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. J. Am. Chem. Soc. 2005, 127, 17090–17095.

27

Zhong, Y.; Wang, Z. X.; Zhang, R. F.; Bai, F.; Wu, H. M.; Haddad, R.; Fan, H. Y. Interfacial self-assembly driven formation of hierarchically structured nanocrystals with photocatalytic activity. ACS Nano 2014, 8, 827–833.

28

Liu, Y. Q.; Wang, L.; Feng, H. X.; Ren, X. T.; Ji, J. J.; Bai, F.; Fan, H. Y. Microemulsion-assisted self-assembly and synthesis of size-controlled porphyrin nanocrystals with enhanced photocatalytic hydrogen evolution. Nano Lett. 2019, 19, 2614–2619.

29

Zhang, Z. J.; Zhu, Y. F.; Chen, X. J.; Zhang, H. J.; Wang, J. A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution. Adv. Mater. 2019, 31, 1806626.

30

Zhang, N.; Wang, L.; Wang, H. M.; Cao, R. H.; Wang, J. F.; Bai, F.; Fan, H. Y. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett. 2018, 18, 560–566.

31

Chen, S. D.; Ren, X. T.; Tian, S. F.; Sun, J. J.; Bai, F. Controllable synthesis of cobalt porphyrin nanocrystals through micelle confinement self-assembly. MRS Adv. 2020, 5, 2147–2155.

32

Herbst, S.; Soberats, B.; Leowanawat, P.; Stolte, M.; Lehmann, M.; Würthner, F. Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases. Nat. Commun. 2018, 9, 2646.

33

Chen, Y. Z.; Yan, C. X.; Dong, J. Q.; Zhou, W. J.; Rosei, F.; Feng, Y.; Wang, L. N. Structure/property control in photocatalytic organic semiconductor nanocrystals. Adv. Funct. Mater. 2021, 31, 2104099.

34

Sengupta, S.; Würthner, F. Chlorophyll J-aggregates: From bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics. Acc. Chem. Res. 2013, 46, 2498–2512.

35

Krzeszewski, M.; Espinoza, E. M.; Červinka, C.; Derr, J. B.; Clark, J. A.; Borchardt, D.; Beran, G. J. O.; Gryko, D. T.; Vullev, V. I. Dipole effects on electron transfer are enormous. Angew. Chem., Int. Ed. 2018, 57, 12365–12369.

36

Tian, S. F.; Chen, S. D.; Ren, X. T.; Cao, R. H.; Hu, H. Y.; Bai, F. Bottom-up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Res. 2019, 12, 3109–3115.

37

Qu, D.; Liu, J.; Miao, X.; Han, M. M.; Zhang, H. C.; Cui, Z.; Sun, S. R.; Kang, Z. H.; Fan, H. Y.; Sun, Z. C. Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Appl. Catal. B: Environ. 2018, 227, 418–424.

38

Li, R. G.; Zhang, F. X.; Wang, D. E.; Yang, J. X.; Li, M. R.; Zhu, J.; Zhou, X.; Han, H. X.; Li, C. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 2013, 4, 1432.

Nano Research
Pages 5719-5725
Cite this article:
Cao R, Wang J, Li Y, et al. Morphology-controlled porphyrin nanocrystals with enhanced photocatalytic hydrogen production. Nano Research, 2022, 15(6): 5719-5725. https://doi.org/10.1007/s12274-022-4286-6
Topics:

1233

Views

21

Crossref

21

Web of Science

23

Scopus

1

CSCD

Altmetrics

Received: 11 February 2022
Revised: 28 February 2022
Accepted: 01 March 2022
Published: 04 April 2022
© Tsinghua University Press 2022
Return