AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution

Xue Bai1,§Liming Wang3,4,§Bing Nan5,§Tianmi Tang1Xiaodi Niu2( )Jingqi Guan1( )
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, China
College of Food Science and Engineering, Jilin University, Changchun 130062, China
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China

§ Xue Bai, Liming Wang, and Bing Nan contributed equally to this work.

Show Author Information

Graphical Abstract

Single-atom Mn-NSG (NSG means N- and S- codoped graphene) with Mn-N3S sites shows a low oxygen evolution reaction (OER) overpotential of 296 mV at 10 mA·cm−2 and a small Tafel slope of 38 mV·dec–1 in alkaline media, over which the O–O formation step is the rate-determining step.

Abstract

Lack of high-efficiency, cost-efficient, and well-stocked oxygen evolution reaction (OER) electrocatalysts is a main challenge in large-scale implementation of electrolytic water. By regulating the electronic structure of isolated single-atom metal sites, high-performance transition-metal-based catalysts can be fabricated to greatly improve the OER performance. Herein, we demonstrate single-atom manganese coordinated to nitrogen and sulfur species in two-dimensional graphene nanosheets Mn-NSG (NSG means N- and S- codoped graphene) as an active and durable OER catalyst with a low overpotential of 296 mV in alkaline media, compared to that of the benchmark IrO2 catalyst. Theoretical calculations and experimental measurements reveal that the Mn-N3S sites in the graphene matrix are the most active sites for the OER due to modified electronic structure of the Mn site by three nitrogen and one sulfur atoms coordination, which show lower theoretical overpotential than the Mn-N4 sites and over which the O–O formation step is the rate-determining step.

Electronic Supplementary Material

Download File(s)
12274_2022_4293_MOESM1_ESM.pdf (2.1 MB)

References

1

Zhang, H. B.; Cheng, W. R.; Luan, D. Y.; Lou, X. W. Atomically dispersed reactive centers for electrocatalytic CO2 reduction and water splitting. Angew. Chem. , Int. Ed. 2021, 60, 13177–13196.

2

Wang, Y. X.; Su, H. Y.; He, Y. H.; Li, L. G.; Zhu, S. Q.; Shen, H.; Xie, P. F.; Fu, X. B.; Zhou, G. Y.; Feng, C. et al. Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 2020, 120, 12217–12314.

3

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

4

Wang, Y.; Huang, X.; Wei, Z. D. Recent developments in the use of single-atom catalysts for water splitting. Chin. J. Catal. 2021, 42, 1269–1286.

5

Zhang, X. P.; Wang, H. Y.; Zheng, H. Q.; Zhang, W.; Cao, R. O–O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. Chin. J. Catal. 2021, 42, 1253–1268.

6

Wang, Q. C.; Xue, X. X.; Lei, Y. P.; Wang, Y. C.; Feng, Y. X.; Xiong, X.; Wang, D. S.; Li, Y. D. Engineering of electronic states on Co3O4 ultrathin nanosheets by cation substitution and anion vacancies for oxygen evolution reaction. Small 2020, 16, 2001571.

7

Gao, J. J.; Tao, H. B.; Liu, B. Progress of nonprecious-metal-based electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2021, 33, 2003786.

8

Zhou, Y. N.; Li, J.; Gao, X. P.; Chu, W.; Gao, G. P.; Wang, L. W. Recent advances in single-atom electrocatalysts supported on two-dimensional materials for the oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 9979–9999.

9

Song, C. Y.; Liu, Y.; Wang, Y. C.; Tang, S. H.; Li, W. K.; Li, Q.; Zeng, J.; Chen, L.; Peng, H. C.; Lei, Y. P. Highly efficient oxygen evolution and stable water splitting by coupling NiFe LDH with metal phosphides. Sci. China Mater. 2021, 64, 1662–1670.

10

Yao, D. X.; Gu, L. L.; Zuo, B.; Weng, S.; Deng, S. W.; Hao, W. J. A strategy for preparing high-efficiency and economical catalytic electrodes toward overall water splitting. Nanoscale 2021, 13, 10624–10648.

11

Yu, M. Q.; Budiyanto, E.; Tüysüz, H. Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202103824.

12
Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, in press, https://doi.org/10.1016/j.apmate.2021.10.004.
13

Chen, L.; Wang, Y. P.; Zhao, X.; Wang, Y. C/; Li, Q.; Wang, Q. C.; Tang, Y. G.; Lei, Y. P. Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting. J. Mater. Sci. Technol. 2022, 110, 128–135.

14

Najafpour, M. M.; Renger, G.; Hołyńska, M.; Moghaddam, A. N.; Aro, E. M.; Carpentier, R.; Nishihara, H.; Eaton-Rye, J. J.; Shen, J. R.; Allakhverdiev, S. I. Manganese compounds as water-oxidizing catalysts: From the natural water-oxidizing complex to nanosized manganese oxide structures. Chem. Rev. 2016, 116, 2886–2936.

15

Jin, K.; Chu, A.; Park, J.; Jeong, D.; Jerng, S. E.; Sim, U.; Jeong, H. Y.; Lee, C. W.; Park, Y. S.; Yang, K. D. et al. Partially oxidized sub-10 nm MnO nanocrystals with high activity for water oxidation catalysis. Sci. Rep. 2015, 5, 10279.

16

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

17

Han, X.; Zhang, T. Y.; Chen, W. X.; Dong, B.; Meng, G.; Zheng, L. R.; Yang, C.; Sun, X. M.; Zhuang, Z. B.; Wang, D. S. et al. Mn-N4 oxygen reduction electrocatalyst: Operando investigation of active sites and high performance in zinc-air battery. Adv. Energy Mater. 2021, 11, 2002753.

18

Guan, J. Q.; Bai, X.; Tang, T. M. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837.

19

Guan, J. Q.; Duan, Z. Y.; Zhang, F. X.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q. G.; Chen, J. Q.; Tang, C. H.; Li, C. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat. Catal. 2018, 1, 870–877.

20

Guan, J. Q. Effect of coordination surroundings of isolated metal sites on electrocatalytic performances. J. Power Sources 2021, 506, 230143.

21

Huang, D. K.; Luo, Y. Z.; Li, S.; Liao, L.; Li, Y. X.; Chen, H.; Ye, J. H. Recent advances in tuning the electronic structures of atomically dispersed M-N-C materials for efficient gas-involving electrocatalysis. Mater. Horiz. 2020, 7, 970–986.

22

Shi, Q. R.; Hwang, S.; Yang, H. P.; Ismail, F.; Su, D.; Higgins, D.; Wu, G. Supported and coordinated single metal site electrocatalysts. Mater. Today 2020, 37, 93–111.

23

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

24

Yuan, C. Z.; Hui, K. S.; Yin, H.; Zhu, S. Q.; Zhang, J. T.; Wu, X. L.; Hong, X. T.; Zhou, W.; Fan, X.; Bin, F. et al. Regulating intrinsic electronic structures of transition-metal-based catalysts and the potential applications for electrocatalytic water splitting. ACS Mater. Lett. 2021, 3, 752–780.

25

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem. , Int. Ed. 2021, 60, 3212–3221.

26

Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

27

Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

28

Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

29

Singh, B.; Sharma, V.; Gaikwad, R. P.; Fornasiero, P.; Zbořil, R.; Gawande, M. B. Single-atom catalysts: A sustainable pathway for the advanced catalytic applications. Small 2021, 17, 2006473.

30

Wu, X.; Zhang, H. B.; Zuo, S. W.; Dong, J. C.; Li, Y.; Zhang, J.; Han, Y. Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 2021, 13, 136.

31
Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed., in press, https://doi.org.10.1002/anie.202115219.
32

Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245–1251.

33

Hou, Y.; Qiu, M.; Kim, M. G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X. D.; Yang, B.; Cho, J.; Chen, M. W. et al. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.

34

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

35

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter 1993, 47, 558–561.

36

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B Condens. Matter 1994, 49, 14251–14269.

37

Kaneti, Y. V.; Guo, Y. N.; Septiani, N. L. W.; Iqbal, M.; Jiang, X. C.; Takei, T.; Yuliarto, B.; Alothman, Z. A.; Golberg, D.; Yamauchi, Y. Self-templated fabrication of hierarchical hollow manganese-cobalt phosphide yolk–shell spheres for enhanced oxygen evolution reaction. Chem. Eng. J. 2021, 405, 126580.

38

Chen, M. J.; Li, X.; Yang, F.; Li, B. Y.; Stracensky, T.; Karakalos, S.; Mukerjee, S.; Jia, Q. Y.; Su, D.; Wang, G. F. et al. Atomically dispersed MnN4 catalysts via environmentally benign aqueous synthesis for oxygen reduction: Mechanistic understanding of activity and stability improvements. ACS Catal. 2020, 10, 10523–10534.

39

Shang, H. S.; Jiang, Z. L.; Zhou, D. N.; Pei, J. J.; Wang, Y.; Dong, J. C.; Zheng, X. S.; Zhang, J. T.; Chen, W. X. Engineering a metal-organic framework derived Mn-N4-CxSy atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994–5999.

40

Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H. T.; Mayrhofer, K. J. J.; Kim, H.; Choi, M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 2016, 7, 10922.

41

Pan, Y.; Liu, S. J.; Sun, K. A.; Chen, X.; Wang, B.; Wu, K. L.; Cao, X.; Cheong, W. C.; Shen, R. A.; Han, A. J. et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew. Chem. , Int. Ed. 2018, 57, 8614–8618.

42

Sun, X. P.; Sun, S. X.; Gu, S. Q.; Liang, Z. F.; Zhang, J. X.; Yang, Y. Q.; Deng, Z.; Wei, P.; Peng, J.; Xu, Y. et al. High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy 2019, 61, 245–250.

43

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

44

Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 14190–14199.

45

Wu, C. C.; Zhang, X. M.; Xia, Z. X.; Shu, M.; Li, H. Q.; Xu, X. L.; Si, R.; Rykov, A. I.; Wang, J. H.; Yu, S. S. et al. Insight into the role of Ni-Fe dual sites in the oxygen evolution reaction based on atomically metal-doped polymeric carbon nitride. J. Mater. Chem. A 2019, 7, 14001–14010.

46

Zhao, Z. H.; Li, M. T.; Zhang, L. P.; Dai, L. M.; Xia, Z. H. Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries. Adv. Mater. 2015, 27, 6834–6840.

47

Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.

48

Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Dong Kim, N.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

49

Sun, Y. M.; Hu, X. L.; Luo, W.; Xia, F. F.; Huang, Y. H. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 2013, 23, 2436–2444.

50

Shinde, S. S.; Lee, C. H.; Sami, A.; Kim, D. H.; Lee, S. U.; Lee, J. H. Scalable 3D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. ACS Nano 2017, 11, 347–357.

Nano Research
Pages 6019-6025
Cite this article:
Bai X, Wang L, Nan B, et al. Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution. Nano Research, 2022, 15(7): 6019-6025. https://doi.org/10.1007/s12274-022-4293-7
Topics:

1092

Views

68

Crossref

64

Web of Science

66

Scopus

10

CSCD

Altmetrics

Received: 25 January 2022
Revised: 01 March 2022
Accepted: 04 March 2022
Published: 25 April 2022
© Tsinghua University Press 2022
Return