AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced polysulfide redox kinetics by niobium oxynitrides via in-situ adsorptive and catalytic effect in wide temperature range

Benben Wei1,2,§Chaoqun Shang1,§( )Qiao Cu3Le Hu4Xuelian Fu3Guofu Zhou3Xin Wang3( )
School of Materials Science and Engineering & Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
School of Materials Science and Engineering & State Key Laboratory of Material Processing and Die and Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China

§ Benben Wei and Chaoqun Shang contributed equally to this work.

Show Author Information

Graphical Abstract

The employment of niobium oxynitrides highly dispersed on graphene (NbON-G) can effectively promote the conversion of absorbed lithium polysulfides and guarantee potential performance of Li-S batteries in wide temperature range.

Abstract

The development of Li-S batteries (LSBs) is hindered by the low utilization of S species and sluggish redox reaction kinetics. Polar metal oxides always possess high adsorption to polar S species, while conductive metal nitrides show fast electron transport and ensure fast redox reaction of S species. The combination merits of metal oxides and metal nitrides in one provide an effective strategy to improve the electrochemical performance of LSBs. In this work, defect design of niobium oxynitrides highly dispersed on graphene (NbON-G) is evaluated as effective trapper and catalyst for S species. Owning to the effective structural merits including enriched active sites, alleviated volume variation, defect modulated electronic property, and in-situ chemisorption and catalytic conversion of soluble lithium polysulfides (LiPSs), the LSBs with NbON-G modified separator show remarkably enhanced performance compared to NbN-G and Nb2O5-G. Surprisingly, even at low temperature of −40 °C, the LSBs with NbON-G can operate for 1,000 cycles with 0.04% capacity decay per cycle (Rate: 2 C).

Electronic Supplementary Material

Download File(s)
12274_2022_4295_MOESM1_ESM.pdf (2.9 MB)

References

1

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

2

Hu, J.; Wang, Z. Y.; Fu, Y.; Lyu, L.; Lu, Z. G.; Zhou, L. M. In situ assembly of MnO2 nanosheets on sulfur-embedded multichannel carbon nanofiber composites as cathodes for lithium-sulfur batteries. Sci. China Mater. 2020, 63, 728–738.

3

Xin, S.; Chang, Z. W.; Zhang, X. B.; Guo, Y. G. Progress of rechargeable lithium metal batteries based on conversion reactions. Natl. Sci. Rev. 2017, 4, 54–70.

4

Zhang, Q. F.; Wang, Y. P.; Seh, Z. W.; Fu, Z. H.; Zhang, R. F.; Cui, Y. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 2015, 15, 3780–3786.

5

Guo, H.; Hu, J.; Yuan, H. M.; Wu, N. N.; Li, Y. Z.; Liu, G. Y.; Qin, N.; Liao, K. M.; Li, Z. Q.; Luo, W. et al. Ternary transition metal sulfide as high real energy cathode for lithium-sulfur pouch cell under lean electrolyte conditions. Small Methods 2022, 6, 2101402.

6

Bai, X. M.; Wang, C. S.; Dong, C. F.; Li, C. C.; Zhai, Y. J.; Si, W. W.; Xu, L. Q. Porous honeycomb-like C3N4/rGO composite as host for high performance Li-S batteries. Sci. China Mater. 2019, 62, 1265–1274.

7

Ji, L.; Wang, X.; Jia, Y. F.; Hu, Q. L.; Duan, L. M.; Geng, Z. B.; Niu, Z. Q.; Li, W. S.; Liu, J. H.; Zhang, Y. G. et al. Flexible electrocatalytic nanofiber membrane reactor for lithium/sulfur conversion chemistry. Adv. Funct. Mater. 2020, 30, 1910533.

8

Wei, B. B.; Shang, C. Q.; Wang, X.; Zhou, G. F. Conductive FeOOH as multifunctional interlayer for superior lithium-sulfur batteries. Small 2020, 16, 2002789.

9

Huang, M.; Yang, J. Y.; Xi, B. J.; Mi, K.; Feng, Z. Y.; Liu, J.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Enhancing kinetics of Li-S batteries by graphene-like N, S-codoped biochar fabricated in NaCl non-aqueous ionic liquid. Sci. China Mater. 2019, 62, 455–464.

10

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

11

Zhang, X. Z.; Shang, C. Q.; Akinoglu, E. M.; Wang, X.; Zhou, G. F. Constructing Co3S4 nanosheets coating N-doped carbon nanofibers as freestanding sulfur host for high-performance lithium-sulfur batteries. Adv. Sci. 2020, 7, 2002037.

12

Li, R. R.; Peng, H. J.; Wu, Q. P.; Zhou, X. J.; He, J.; Shen, H. J.; Yang, M. H.; Li, C. L. Sandwich-like catalyst-carbon-catalyst trilayer structure as a compact 2D host for highly stable lithium-sulfur batteries. Angew. Chem. , Int. Ed. 2020, 59, 12129–12138.

13

Shang, C. Q.; Cao, L. J.; Yang, M. Y.; Wang, Z. Y.; Li, M. C.; Zhou, G. F.; Wang, X.; Lu, Z. G. Freestanding Mo2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries. Energy Storage Mater. 2019, 18, 375–381.

14

Li, Z.; Zhang, J. T.; Chen, Y. M.; Li, J.; Lou, X. W. Pie-like electrode design for high-energy density lithium-sulfur batteries. Nat. Commun. 2015, 6, 8850.

15

Huang, S. Z.; Zhang, L. L.; Wang, J. Y.; Zhu, J. L.; Shen, P. K. In situ carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li-S batteries. Nano Res. 2018, 11, 1731–1743.

16

Zang, J.; An, T. H.; Dong, Y. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium-sulfur batteries. Nano Res. 2015, 8, 2663–2675.

17

Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2013, 6, 38–46.

18

Mao, H.; Liu, L. M.; Shi, L.; Wu, H.; Lang, J. X.; Wang, K.; Zhu, T. X.; Gao, Y. Y.; Sun, Z. H.; Zhao, J. et al. High loading cotton cellulose-based aerogel self-standing electrode for Li-S batteries. Sci. Bull. 2020, 65, 803–811.

19

Chen, L.; Huang, L. W.; Chen, G. J.; Zhang, X. L.; Chen, Y. G. Highly graphitized porous carbon-FeNi3 fabricated from oleic acid for advanced lithium-sulfur batteries. Chem. -Eur. J. 2020, 26, 8926–8934.

20

Guo, P. Q.; Sun, K.; Shang, X. N.; Liu, D. Q.; Wang, Y. R.; Liu, Q. M.; Fu, Y. J.; He, D. Y. Nb2O5/rgo nanocomposite modified separators with robust polysulfide traps and catalytic centers for boosting performance of lithium-sulfur batteries. Small 2019, 15, 1902363.

21

Fang, M. M.; Chen, Z. M.; Liu, Y.; Quan, J. P.; Yang, C.; Zhu, L. C.; Xu, Q. B.; Xu, Q. Design and synthesis of novel sandwich-type C@TiO2@C hollow microspheres as efficient sulfur hosts for advanced lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 1630–1638.

22

Li, S.; Cen, Y.; Xiang, Q.; Aslam, M. K.; Hu, B. B.; Li, W.; Tang, Y.; Yu, Q.; Liu, Y. P.; Chen, C. G. Vanadium dioxide-reduced graphene oxide binary host as an efficient polysulfide plague for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 1658–1668.

23

Choi, J.; Jeong, T. G.; Lee, D.; Oh, S. H.; Jung, Y.; Kim, Y. T. Enhanced rate capability due to highly active Ta2O5 catalysts for lithium sulfur batteries. J. Power Sources 2019, 435, 226707.

24

Mi, Y. Y.; Liu, W.; Li, X. L.; Zhuang, J. L.; Zhou, H. H.; Wang, H. L. High-performance Li-S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Res. 2017, 10, 3698–3705.

25

Zhen, M. M.; Jiang, K. L.; Guo, S. Q.; Shen, B. X.; Liu, H. L. Suitable lithium polysulfides diffusion and adsorption on CNTs@TiO2-bronze nanosheets surface for high-performance lithium-sulfur batteries. Nano Res. 2022, 15, 933–941.

26

Wang, D.; Liu, J.; Bao, X. J.; Qing, C.; Zhu, T.; Wang, H. E. Macro/mesoporous carbon/defective TiO2 composite as a functional host for lithium-sulfur batteries. ACS Appl. Energy Mater. 2022, 5, 2573–2579.

27

Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

28

Tang, T. Y.; Zhang, T.; Zhao, L. N.; Zhang, B.; Li, W.; Xu, J. J.; Li, T.; Zhang, L.; Qiu, H. L.; Hou, Y. L. Multifunctional V3S4-nanowire/graphene composites for high performance Li-S batteries. Sci. China Mater. 2020, 63, 1910–1919.

29

Fan, S.; Huang, S. Z.; Pam, M. E.; Chen, S.; Wu, Q. Y.; Hu, J. P.; Wang, Y.; Ang, L. K.; Yan, C. C.; Shi, Y. M. et al. Design multifunctional catalytic interface: Toward regulation of polysulfide and Li2S redox conversion in Li-S batteries. Small 2019, 15, 1906132.

30

Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

31

Song, N.; Xi, B. J.; Wang, P.; Ma, X.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium-sulfur batteries. Nano Res. 2022, 15, 1424–1432.

32

Song, Y. Z.; Zhao, W.; Kong, L.; Zhang, L.; Zhu, X. Y.; Shao, Y. L.; Ding, F.; Zhang, Q.; Sun, J. Y.; Liu, Z. F. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries. Energy Environ. Sci. 2018, 11, 2620–2630.

33

Jiao, L.; Zhang, C.; Geng, C. N.; Wu, S. C.; Li, H.; Lv, W.; Tao, Y.; Chen, Z. J.; Zhou, G. M.; Li, J. et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1900219.

34

Li, Z. H.; Zhou, C.; Hua, J. H.; Hong, X. F.; Sun, C. L.; Li, H. W.; Xu, X.; Mai, L. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.

35

Wang, R. C.; Luo, C.; Wang, T. S.; Zhou, G. M.; Deng, Y. Q.; He, Y. B.; Zhang, Q. F.; Kang, F. Y.; Lv, W.; Yang, Q. H. Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries. Adv. Mater. 2020, 32, 2000315.

36

Salhabi, E. H. M.; Zhao, J. L; Wang, J. Y.; Yang, M.; Wang, B.; Wang, D. Hollow multi-shelled structural TiO2-x with multiple spatial confinement for long-life lithium-sulfur batteries. Angew. Chem. , Int. Ed. 2019, 58, 9078–9082.

37

Zhang, T. H.; Yun, S. N.; Li, X.; Huang, X. L.; Hou, Y. Z.; Liu, Y. F.; Li, J.; Zhou, X.; Fang, W. Fabrication of niobium-based oxides/oxynitrides/nitrides and their applications in dye-sensitized solar cells and anaerobic digestion. J. Power Sources 2017, 340, 325–336.

38

Tan, S. S.; Dai, Y. H.; Jiang, Y. L.; Wei, Q. L.; Zhang, G. B.; Xiong, F. Y.; Zhu, X. Q.; Hu, Z. Y.; Zhou, L.; Jin, Y. C. et al. Revealing the origin of highly efficient polysulfide anchoring and transformation on anion-substituted vanadium nitride host. Adv. Funct. Mater. 2021, 31, 2008034.

39

Luo, D.; Zhang, Z.; Li, G. R.; Cheng, S. B.; Li, S.; Li, J. D.; Gao, R.; Li, M.; Sy, S.; Deng, Y. P. et al. Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb2O5-x nanocluster toward superior Li-S performance. ACS Nano 2020, 14, 4849–4860.

40

Wang, Z. Y.; Wang, L.; Liu, S.; Li, G. R.; Gao, X. P. Conductive coooh as carbon-free sulfur immobilizer to fabricate sulfur-based composite for lithium-sulfur battery. Adv. Funct. Mater. 2019, 29, 1901051.

41

He, J. R.; Hartmann, G.; Lee, M.; Hwang, G. S.; Chen, Y. F.; Manthiram, A. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ. Sci. 2019, 12, 344–350.

42

Wang, Y.; Zhou, L. P.; Huang, J. Y.; Wang, X. Y.; Xu, X. L.; Lu, J. G.; Tian, Y.; Ye, Z. Z.; Tang, H. C.; Lee, S. T. et al. Highly stable lithium-sulfur batteries promised by siloxene: An effective cathode material to regulate the adsorption and conversion of polysulfides. Adv. Funct. Mater. 2020, 30, 1910331.

43

Tao, Y. Q.; Wei, Y. J.; Liu, Y.; Wang, J. T.; Qiao, W. M.; Ling, L. C.; Long, D. H. Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium-sulfur battery. Energy Environ. Sci. 2016, 9, 3230–3239.

44

Ge, W. N.; Wang, L.; Li, C. C.; Wang, C. S.; Wang, D. B.; Qian, Y. T.; Xu, L. Q. Conductive cobalt doped niobium nitride porous spheres as an efficient polysulfide convertor for advanced lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 6276–6282.

45

Yu, Z.; Wang, B. L.; Liao, X. B.; Zhao, K. N.; Yang, Z. F.; Xia, F. J.; Sun, C. L.; Wang, Z.; Fan, C. Y.; Zhang, J. P. et al. Boosting polysulfide redox kinetics by graphene-supported Ni nanoparticles with carbon coating. Adv. Energy Mater. 2020, 10, 2000907.

46

Fan, C. Y.; Zheng, Y. P.; Zhang, X. H.; Shi, Y. H.; Liu, S. Y.; Wang, H. C.; Wu, X. L.; Sun, H. Z.; Zhang, J. P. High-performance and low-temperature lithium-sulfur batteries: Synergism of thermodynamic and kinetic regulation. Adv. Energy Mater. 2018, 8, 1703638.

47

Deng, D. R.; Xue, F.; Bai, C. D.; Lei, J.; Yuan, R. M.; Zheng, M. S.; Dong, Q. F. Enhanced adsorptions to polysulfides on graphene-supported bn nanosheets with excellent Li-S battery performance in a wide temperature range. ACS Nano 2018, 12, 11120–11129.

48

Huang, J. Q.; Liu, X. F.; Zhang, Q.; Chen, C. M.; Zhao, M. Q.; Zhang, S. M.; Zhu, W. C.; Qian, W. Z.; Wei, F. Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from –40 to 60 °C. Nano Energy 2013, 2, 314–321.

Nano Research
Pages 6200-6207
Cite this article:
Wei B, Shang C, Cu Q, et al. Enhanced polysulfide redox kinetics by niobium oxynitrides via in-situ adsorptive and catalytic effect in wide temperature range. Nano Research, 2022, 15(7): 6200-6207. https://doi.org/10.1007/s12274-022-4295-5
Topics:

836

Views

8

Crossref

7

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 31 December 2021
Revised: 28 February 2022
Accepted: 06 March 2022
Published: 20 April 2022
© Tsinghua University Press 2022
Return