Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Ammonia plays a vital role in the development of modern agriculture and industry. Compared to the conventional Haber–Bosch ammonia synthesis in industry, electrocatalytic nitrogen reduction reaction (NRR) is considered as a promising and environmental friendly strategy to synthesize ammonia. Here, inspired by biological nitrogenase, we designed iron doped tin oxide (Fe-doped SnO2) for nitrogen reduction. In this work, iron can optimize the interface electron transfer and improve the poor conductivity of the pure SnO2, meanwhile, the synergistic effect between iron and Sn ions improves the catalyst activity. In the electrocatalytic NRR test, Fe-doped SnO2 exhibits a NH3 yield of 28.45 μg·h−1·mgcat−1, which is 2.1 times that of pure SnO2, and Faradaic efficiency of 6.54% at −0.8 V vs. RHE in 0.1 M Na2SO4. It also shows good stability during a 12-h long-term stability test. Density functional theory calculations show that doped Fe atoms in SnO2 enhance catalysis performance of some Sn sites by strengthening N–Sn interaction and lowering the energy barrier of the rate-limiting step of NRR. The transient photovoltage test reveals that electrons in the low-frequency region are the key to determining the electron transfer ability of Fe-doped SnO2.
Liu, Y. L.; Deng, P. J.; Wu, R. Q.; Zhang, X. L.; Sun, C. H.; Li, H. T. Oxygen vacancies for promoting the electrochemical nitrogen reduction reaction. J. Mater. Chem. A 2021, 9, 6694–6709.
Chen, X. R.; Guo, Y. T.; Du, X. C.; Zeng, Y. S.; Chu, J. W.; Gong, C. H.; Huang, J. W.; Fan, C.; Wang, X. F.; Xiong, J. Atomic structure modification for electrochemical nitrogen reduction to ammonia. Adv. Energy Mater. 2020, 10, 1903172.
Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.
Smith, C.; Hill, A. K.; Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 2020, 13, 331–344.
Wang, S.; Wei, M.; Wu, B. D.; Cheng, H. Y.; Wang, C. Y. Combined nitrogen deposition and Cd stress antagonistically affect the allelopathy of invasive alien species Canada goldenrod on the cultivated crop lettuce. Sci. Hortic. 2020, 261, 108955.
Lu, R. F.; Liu, Z. Y.; Shao, Y. D.; Su, J. C.; Li, X. J.; Sun, F.; Zhang, Y. H.; Li, S.; Zhang, Y. L.; Cui, J. et al. Nitric oxide enhances rice resistance to rice black-streaked dwarf virus infection. Rice (N Y) 2020, 13, 24.
Elishav, O.; Mosevitzky Lis, B.; Miller, E. M.; Arent, D. J.; Valera-Medina, A.; Grinberg Dana, A.; Shter, G. E.; Grader, G. S. Progress and prospective of nitrogen-based alternative fuels. Chem. Rev. 2020, 120, 5352–5436.
Ren, J. T.; Chen, L.; Wang, H. Y.; Yuan, Z. Y. Aqueous rechargeable Zn-N2 battery assembled by bifunctional cobalt phosphate nanocrystals-loaded carbon nanosheets for simultaneous NH3 production and power generation. ACS Appl. Mater. Interfaces 2021, 13, 12106–12117.
Hou, J. B.; Yang, M.; Zhang, J. L. Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions. Nanoscale 2020, 12, 6900–6920.
Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.
Liu, Y. L.; Deng, P. J.; Wu, R. Q.; Geioushy, R. A.; Li, Y. X.; Liu, Y. X.; Zhou, F. L.; Li, H. T.; Sun, C. H. BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction. Front. Phys. 2021, 16, 53503.
Cao, N.; Zheng, G. F. Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 2018, 11, 2992–3008.
Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.
Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.
Yang, Y. L.; Mao, B. D.; Gong, G.; Li, D.; Liu, Y. H.; Cao, W. J.; Xing, L.; Zeng, J.; Shi, W. D.; Yuan, S. Q. In-situ growth of Zn-AgIn5S8 quantum dots on g-C3N4 towards 0D/2D heterostructured photocatalysts with enhanced hydrogen production. Int. J. Hyd. Energy 2019, 44, 15882–15891.
Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.
Yin, Y. J.; Tan, Y.; Wei, Q. Y.; Zhang, S. C.; Wu, S. Q.; Huang, Q.; Hu, F. L.; Mi, Y. Nanovilli electrode boosts hydrogen evolution: A surface with superaerophobicity and superhydrophilicity. Nano Res. 2020, 14, 961–968.
Li, Y. L.; Gao, C. L.; Jiang, W. S.; Zhuang, C. Q.; Tan, W. Y.; Li, W. M.; Li, Y. L.; Wang, L. H.; Liao, X. Z.; Sun, Z. C. et al. A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution. Appl. Catal. B Environ. 2021, 286, 119923.
Li, W. M.; Zhuang, C. Q.; Li, Y. L.; Gao, C. L.; Jiang, W. S.; Sun, Z. C.; Qi, K. Z. Anchoring ultra-small TiO2 quantum dots onto ultra-thin and large-sized Mxene nanosheets for highly efficient photocatalytic water splitting. Ceram. Int. 2021, 47, 21769–21776.
Zhang, H.; Li, Y. L.; Li, W. M.; Zhuang, C. Q.; Gao, C. L.; Jiang, W. S.; Sun, W.; Qi, K. Z.; Sun, Z. C.; Han, X. D. Designing large-sized cocatalysts for fast charge separation towards highly efficient visible-light-driven hydrogen evolution. Int. J. Hyd. Energy 2021, 46, 28545–28553.
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.
Wang, X. Q.; Wang, W. Y.; Qiao, M.; Wu, G.; Chen, W. X.; Yuan, T. W.; Xu, Q.; Chen, M.; Zhang, Y.; Wang, X. et al. Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci. Bull. 2018, 63, 1246–1253.
Pang, F. J.; Wang, Z. F.; Zhang, K.; He, J.; Zhang, W. Q.; Guo, C. X.; Ding, Y. Bimodal nanoporous Pd3Cu1 alloy with restrained hydrogen evolution for stable and high yield electrochemical nitrogen reduction. Nano Energy 2019, 58, 834–841.
Yao, Y.; Wang, H. J.; Yuan, X. Z.; Li, H.; Shao, M. H. Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Lett. 2019, 4, 1336–1341.
Wang, R.; He, C. Z.; Chen, W. X.; Zhao, C. X.; Huo, J. R. Rich B active centers in Penta-B2C as high-performance photocatalyst for nitrogen reduction. Chin. Chem. Lett. 2021, 32, 3821–3824.
Liu, Y. H.; Huang, H.; Cao, W. J.; Mao, B. D.; Liu, Y.; Kang, Z. H. Advances in carbon dots: From the perspective of traditional quantum dots. Mater. Chem. Front. 2020, 4, 1586–1613.
Li, H. T.; Liu, Y. D.; Liu, Y. L.; Wang, L. Z.; Tang, R.; Deng, P. J.; Xu, Z. Q.; Haynes, B.; Sun, C. H.; Huang, J. Efficient visible light driven ammonia synthesis on sandwich structured C3N4/MoS2/Mn3O4 catalyst. Appl. Catal. B Environ. 2021, 281, 119476.
Chen, X. Y.; Li, K.; Yang, X. X.; Lv, J. Q.; Sun, S.; Li, S. Q.; Cheng, D. M.; Li, B.; Li, Y. G.; Zang, H. Y. Oxygen vacancy engineering of calcium cobaltate: A nitrogen fixation electrocatalyst at ambient condition in neutral electrolyte. Nano Res. 2021, 14, 501–506.
Wei, P. P.; Geng, Q.; Channa, A. I.; Tong, X.; Luo, Y. S.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Wang, Z. M.; Sun, X. P. Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil. Nano Res. 2020, 13, 2967–2972.
Xing, Y. L.; Kong, X. D.; Guo, X.; Liu, Y.; Li, Q. Y.; Zhang, Y. Z.; Sheng, Y. L.; Yang, X. P.; Geng, Z. G.; Zeng, J. Bi@Sn core–shell structure with compressive strain boosts the electroreduction of CO2 into formic acid. Adv. Sci. (Weinh) 2020, 7, 1902989.
Liu, Y. T.; Li, D.; Yu, J. Y.; Ding, B. Stable confinement of black phosphorus quantum dots on black tin oxide nanotubes: A robust, double-active electrocatalyst toward efficient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 16439–16444.
Zhang, L. L.; Cong, M. Y.; Ding, X.; Jin, Y.; Xu, F. F.; Wang, Y.; Chen, L.; Zhang, L. X. A janus Fe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2020, 59, 10888–10893.
Zhang, L.; Ren, X.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Li, T. S.; Sun, X. P. Ambient NH3 synthesis via electrochemical reduction of N2 over cubic sub-micron SnO2 particles. Chem. Commun. (Camb) 2018, 54, 12966–12969.
Chu, K.; Liu, Y. P.; Li, Y. B.; Wang, J.; Zhang, H. Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 31806–31815.
Zhao, S. L.; Qin, Y.; Guo, T.; Li, S.; Liu, X. J.; Ou, M.; Wu, Y. P.; Chen, Y. H. SnS nanoparticles grown on Sn-atom-modified N, S-codoped mesoporous carbon nanosheets as electrocatalysts for CO2 reduction to formate. ACS Appl. Nano Mater. 2021, 4, 2257–2264.
Bejtka, K.; Zeng, J. Q.; Sacco, A.; Castellino, M.; Hernández, S.; Farkhondehfal, M. A.; Savino, U.; Ansaloni, S.; Pirri, C. F.; Chiodoni, A. Chainlike mesoporous SnO2 as a well-performing catalyst for electrochemical CO2 reduction. ACS Appl. Energy Mater. 2019, 2, 3081–3091.
Lv, X.; Wang, F. Y.; Du, J.; Liu, Q.; Luo, Y. S.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Zheng, B. Z.; Sun, X. P. Sn dendrites for electrocatalytic N2 reduction to NH3 under ambient conditions. Sustainable Energy Fuels 2020, 4, 4469–4472.
Ulfa, M.; Wang, P. J.; Zhang, J.; Liu, J. W.; de Marcillac, W. D.; Coolen, L.; Peralta, S.; Pauporté, T. Charge injection and electrical response in low-temperature SnO2-based efficient perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 35118–35128.
Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.
Chen, Z. W.; Guo, H. F.; Ma, C. H.; Wang, X.; Jia, X. G.; Yuan, N. Y.; Ding, J. N. Efficiency improvement of Sb2Se3 solar cells based on La-doped SnO2 buffer layer. Solar Energy 2019, 187, 404–410.
Yang, H. Y.; He, C. Z.; Fu, L.; Huo, J. R.; Zhao, C. X.; Li, X. Y.; Song, Y. Capture and separation of CO2 on BC3 nanosheets: A DFT study. Chin. Chem. Lett. 2021, 32, 3202–3206.
Fu, L.; Wang, R.; Zhao, C. X.; Huo, J. R.; He, C. Z.; Kim, K. H.; Zhang, W. Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: A DFT study. Chem. Eng. J. 2021, 414, 128857.
Zhang, Y. D.; Hu, Z. A.; Liang, Y. R.; Yang, Y. Y.; An, N.; Li, Z. M.; Wu, H. Y. Growth of 3D SnO2 nanosheets on carbon cloth as a binder-free electrode for supercapacitors. J. Mater. Chem. A 2015, 3, 15057–15067.
Gurunathan, P.; Ette, P. M.; Ramesha, K. Synthesis of hierarchically porous SnO2 microspheres and performance evaluation as Li-ion battery anode by using different binders. ACS Appl. Mater. Interfaces 2014, 6, 16556–16564.
Wang, D. F.; Yan, X. H.; Zhou, C.; Wang, J. J.; Yuan, X.; Jiang, H.; Zhu, Y. H.; Cheng, X. N.; Li, R. F. A free-standing electrode based on 2D SnS2 nanoplates@3D carbon foam for high performance supercapacitors. Int. J. Energy Res. 2020, 44, 8542–8554.
Li, X. H.; Ren, X.; Liu, X. J.; Zhao, J. X.; Sun, X.; Zhang, Y.; Kuang, X.; Yan, T.; Wei, Q.; Wu, D. A MoS2 nanosheet-reduced graphene oxide hybrid: An efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions. J. Mater. Chem. A 2019, 7, 2524–2528.
Du, H.; Yang, C. Z.; Pu, W. H.; Zeng, L. Y.; Gong, J. Y. Enhanced electrochemical reduction of N2 to ammonia over pyrite FeS2 with excellent selectivity. ACS Sustainable Chem. Eng. 2020, 8, 10572–10580.
Yu, W. K.; Shu, F. H.; Huang, Y. F.; Yang, F. Q.; Meng, Q. G.; Zou, Z.; Wang, J.; Zeng, Z. L.; Zou, G. F.; Deng, S. G. Enhanced electrocatalytic nitrogen reduction activity by incorporation of a carbon layer on SnS microflowers. J. Mater. Chem. A 2020, 8, 20677–20686.
Zhao, X. H.; Zhang, X.; Xue, Z. M.; Chen, W. J.; Zhou, Z.; Mu, T. C. Fe nanodot-decorated MoS2 nanosheets on carbon cloth: An efficient and flexible electrode for ambient ammonia synthesis. J. Mater. Chem. A 2019, 7, 27417–27422.
Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.
Hu, L.; Khaniya, A.; Wang, J.; Chen, G.; Kaden, W. E.; Feng, X. F. Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst. ACS Catal. 2018, 8, 9312–9319.
Li, Y.; Kong, Y.; Hou, Y.; Yang, B.; Li, Z. J.; Lei, L. C.; Wen, Z. H. In situ growth of nitrogen-doped carbon-coated γ-Fe2O3 nanoparticles on carbon fabric for electrochemical N2 fixation. ACS Sustainable Chem. Eng. 2019, 7, 8853–8859.
Yang, H. D.; Liu, Y.; Luo, Y. T.; Lu, S. Q.; Su, B. T.; Ma, J. T. Achieving high activity and selectivity of nitrogen reduction via Fe-N3 coordination on iron single-atom electrocatalysts at ambient conditions. ACS Sustainable Chem. Eng. 2020, 8, 12809–12816.
Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699–2703.
Zhu, X. J.; Zhao, J. X.; Ji, L.; Wu, T. W.; Wang, T.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Xiang, Y. M. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res. 2019, 13, 209–214.
Gao, C. L.; Zhuang, C. Q.; Li, Y. L.; Qi, H. Y.; Chen, G.; Sun, Z. C.; Zou, J.; Han, X. D. In situ liquid cell transmission electron microscopy guiding the design of large-sized cocatalysts coupled with ultra-small photocatalysts for highly efficient energy harvesting. J. Mater. Chem. A 2021, 9, 13056–13064.
Wang, Z. Q.; Zheng, K.; Liu, S. L.; Dai, Z. C.; Xu, Y.; Li, X. N.; Wang, H. J.; Wang, L. Electrocatalytic nitrogen reduction to ammonia by Fe2O3 nanorod array on carbon cloth. ACS Sustainable Chem. Eng. 2019, 7, 11754–11759.
Wu, J.; Zhou, Y. J.; Nie, H. D.; Wei, K. Q.; Huang, H.; Liao, F.; Liu, Y.; Shao, M. W.; Kang, Z. H. Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation. J. Energy Chem. 2022, 66, 61–67.
Wu, Q. Y.; Cao, J. J.; Wang, X.; Liu, Y.; Zhao, Y. J.; Wang, H.; Liu, Y.; Huang, H.; Liao, F.; Shao, M. W. et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat. Commun. 2021, 12, 483.
Nie, H. D.; Liu, Y.; Li, Y.; Wei, K. Q.; Wu, Z. Y.; Shi, H.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. In-situ transient photovoltage study on interface electron transfer regulation of carbon dots/NiCo2O4 photocatalyst for the enhanced overall water splitting activity. Nano Res. 2022, 15, 1786–1795.
Liu, Q.; Zhang, X. X.; Zhang, B.; Luo, Y. L.; Cui, G. W.; Xie, F. Y.; Sun, X. P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale 2018, 10, 14386–14389.
Liu, X. E.; Jang, H.; Li, P.; Wang, J.; Qin, Q.; Kim, M. G.; Li, G. K.; Cho, J. Antimony-based composites loaded on phosphorus-doped carbon for boosting faradaic efficiency of the electrochemical nitrogen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 13329–13334.
Huang, B.; Wu, Y. F.; Chen, B. B.; Qian, Y.; Zhou, N. G.; Li, N. Transition-metal-atom-pairs deposited on g-CN monolayer for nitrogen reduction reaction: Density functional theory calculations. Chin. J. Catal. 2021, 42, 1160–1167.
Chen, X. Z.; Ong, W. J.; Zhao, X. J.; Zhang, P.; Li, N. Insights into electrochemical nitrogen reduction reaction mechanisms: Combined effect of single transition-metal and boron atom. J. Energy Chem. 2021, 58, 577–585.
Huang, B.; Chen, B. B.; Zhu, G. P.; Peng, J. H.; Zhang, P.; Qian, Y.; Li, N. Electrochemical ammonia synthesis via NO reduction on 2D-MOF. ChemPhysChem 2022, 23, e202100785.