Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Rational construction of the facet engineering over metal–organic frameworks is of significant interest for enhancing photocatalytic performance, yet the role of modulator except regulating facet is largely ignored. Herein, facet engineering of NH2-MIL125 (aMIL) was achieved through the facile one-pot method by controlling the concentration of acetic acid modulator. The probable domino effects induced with the detectable modulator were extensively investigated, evidencing the multi-position in one mode contained powder X-Ray diffraction (PXRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS), etc. Meanwhile, correlation among the {111} facets engineering, the degree of structural defects, and the performance of photocatalytic hydrogen peroxide (H2O2) production was studied in detail, revealing that facet and defect engineering respectively play positive and relatively negative roles in the photocatalytic oxygen reduction reaction (ORR) with a volcano-type trend. aMIL-3 photocatalyst could deliver H2O2 production rate of 925.8 μmol·h−1·g−1 (2.03-fold of aMIL) under visible-light irradiation and a quantum yield of 1.08% at 420 nm.
Kofuji, Y.; Isobe, Y.; Shiraishi, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Carbon nitride-aromatic diimide-graphene nanohybrids: Metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency. J. Am. Chem. Soc. 2016, 138, 10019–10025.
Bryliakov, K. P. Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2. Chem. Rev. 2017, 117, 11406–11459.
Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.
Edwards, J. K.; Solsona, B.; Edwin, N. N.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 2009, 323, 1037–1041.
Hou, H. L.; Zeng, X. K.; Zhang, X. W. Production of hydrogen peroxide by photocatalytic processes. Angew. Chem., Int. Ed. 2020, 59, 17356–17376.
Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.
Yuan, L.; Zhang, C. Q.; Wang, J.; Liu, C.; Yu, C. Z. Mesoporous resin nanobowls with optimized donor-acceptor conjugation for highly efficient photocatalytic hydrogen peroxide production. Nano Res. 2021, 14, 3267–3273.
Shi, H. Y.; Li, Y.; Wang, X. F.; Yu, H. G.; Yu, J. G. Selective modification of ultra-thin g-C3N4 nanosheets on the (110) facet of Au/BiVO4 for boosting photocatalytic H2O2 production. Appl. Catal. B: Environ. 2021, 297, 120414.
Zhu, H. G.; Xue, Q.; Zhu, G. Y.; Liu, Y.; Dou, X. Y.; Yuan, X. Decorating Pt@cyclodextrin nanoclusters on C3N4/MXene for boosting the photocatalytic H2O2 Production. J. Mater. Chem. A 2021, 9, 6872–6880.
Chen, L.; Wang, L.; Wan, Y. Y.; Zhang, Y.; Qi, Z. M.; Wu, X. J.; Xu, H. X. Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: A new two-electron water oxidation pathway. Adv. Mater. 2020, 32, 1904433.
He, T.; Kong, X. J.; Li, J. R. Chemically stable metal-organic frameworks: Rational construction and application expansion. Acc. Chem. Res. 2021, 54, 3083–3094.
Zeng, H.; Xie, M.; Wang, T.; Wei, R. J.; Xie, X. J.; Zhao, Y. F.; Lu, W. G.; Li, D. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature 2021, 595, 542–548.
Hao, J. N.; Yan, B. Determination of urinary 1-hydroxypyrene for biomonitoring of human exposure to polycyclic aromatic hydrocarbons carcinogens by a lanthanide-functionalized metal-organic framework sensor. Adv. Funct. Mater. 2017, 27, 1603856.
Zhang, H. B.; Nai, J. W.; Yu, L.; Lou, X. W. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 2017, 1, 77–107.
Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.
Li, L.; Wang, X. S.; Liu, T. F.; Ye, J. H. Titanium-based MOF materials: From crystal engineering to photocatalysis. Small Methods 2020, 4, 2000486.
Huang, X. B.; Li, X. J.; Luan, Q. J.; Zhang, K. Y.; Wu, Z. Y.; Li, B. Z.; Xi, Z. S.; Dong, W. J.; Wang, G. Highly dispersed Pt clusters encapsulated in MIL-125-NH2 via in situ auto-reduction method for photocatalytic H2 production under visible light. Nano Res. 2021, 14, 4250–4257.
Hao, Y. C.; Chen, L. W.; Li, J. N.; Guo, Y.; Su, X.; Shu, M.; Zhang, Q. H.; Gao, W. Y.; Li, S. W.; Yu, Z. L. et al. Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nat. Commun. 2021, 12, 2682.
Huang, H.; Wang, X. S.; Philo, D.; Ichihara, F.; Song, H.; Li, Y. X.; Li, D.; Qiu, T.; Wang, S. Y.; Ye, J. H. Toward visible-light-assisted photocatalytic nitrogen fixation: A titanium metal organic framework with functionalized ligands. Appl. Catal. B: Environ. 2020, 267, 118686.
Isaka, Y.; Kawase, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Two-phase system utilizing hydrophobic metal-organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide. Angew. Chem., Int. Ed. 2019, 58, 5402–5406.
Chen, X. L.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. Introduction of a secondary ligand into titanium-based metal-organic frameworks for visible-light-driven photocatalytic hydrogen peroxide production from dioxygen reduction. J. Mater. Chem. A 2021, 9, 2815–2821.
Chen, X. L.; Kuwahara Y.; Mori, K.; Louis, C.; Yamashita, H. A hydrophobic titanium doped zirconium-based metal organic framework for photocatalytic hydrogen peroxide production in a two-phase system. J. Mater. Chem. A 2020, 8, 1904–1910.
Isaka, Y.; Kondo, Y.; Kawase, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Photocatalytic production of hydrogen peroxide through selective two-electron reduction of dioxygen utilizing amine-functionalized MIL-125 deposited with nickel oxide nanoparticles. Chem. Commun. 2018, 54, 9270–9273.
Liao, X. Y.; Wei, W. J.; Zhou, Y. Q.; Zhang, M.; Cai, Y.; Liu, H. T.; Yao, Y.; Lu, S. X.; Hao, Q. L. A Ti-based bi-MOF for the tandem reaction of H2O2 generation and catalytic oxidative desulfurization. Catal. Sci. Technol. 2020, 10, 1015–1022.
Pan, J.; Liu, G.; Lu, G. Q.; Cheng, H. M. On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. Angew. Chem., Int. Ed. 2011, 50, 2133–2137.
Hu, S.; Liu, M.; Li, K. Y.; Zuo, Y.; Zhang, A. F.; Song, C. S.; Zhang, G. L.; Guo, X. W. Solvothermal synthesis of NH2-MIL-125(Ti) from circular plate to octahedron. CrystEngComm 2014, 16, 9645–9650.
Cheng, X. M.; Dao, X. Y.; Wang, S. Q.; Zhao, J.; Sun, W. Y. Enhanced photocatalytic CO2 reduction activity over NH2-MIL-125(Ti) by facet regulation. ACS Catal. 2021, 11, 650–658.
Guo, F.; Guo, J. H.; Wang, P.; Kang, Y. S.; Liu, Y.; Zhao, J.; Sun, W. Y. Facet-dependent photocatalytic hydrogen production of metal-organic framework NH2-MIL-125(Ti). Chem. Sci. 2019, 10, 4834–4838.
Ma, X.; Wang, L.; Zhang, Q.; Jiang, H. L. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew. Chem., Int. Ed. 2019, 58, 12175–12179.
Xu, M. L.; Li, D. D.; Sun, K.; Jiao, L.; Xie, C. F.; Ding, C. M.; Jiang, H. L. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis. Angew. Chem., Int. Ed. 2021, 60, 16372–16376.
Yang, W.; Wang, H. J.; Liu, R. R.; Wang, J. W.; Zhang, C.; Li, C.; Zhong. D. C.; Lu, T. B. Tailoring crystal facets of metal-organic layers to enhance photocatalytic activity for CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 409–414.
Quan, Z. W.; Wang, Y. X.; Fang, J. Y. High-index faceted noble metal nanocrystals. Acc. Chem. Res. 2013, 46, 191–202.
Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory. Chem. Mater. 2011, 23, 1700–1718.
Fu, Y.; Kang, Z. Z.; Yin, J. L.; Cao, W. C.; Tu, Y. Q.; Wang, Q.; Kong, X. Q. Duet of acetate and water at the defects of metal-organic frameworks. Nano Lett. 2019, 19, 1618–1624.
Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P. Defect engineering: Tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis. Chem. Mater. 2016, 28, 3749–3761.
Ambroz, F.; Macdonald, T. J.; Martis, V.; Parkin, I. P. Evaluation of the BET theory for the characterization of meso and microporous MOFs. Small Methods 2018, 2, 1800173.
Liu, Y. W.; Liu, S. M.; He, D. F.; Li, N.; Ji, Y. J.; Zheng, Z. P.; Luo, F.; Liu, S. X.; Shi, Z.; Hu, C. W. Crystal facets make a profound difference in polyoxometalate-containing metal-organic frameworks as catalysts for biodiesel production. J. Am. Chem. Soc. 2015, 137, 12697–12703.
Synytska, A.; Kirillova, A.; Isa, L. Synthesis and contact angle measurements of Janus particles. ChemPlusChem 2014, 79, 656–661.
Samari, M.; Zinadini, S.; Zinatizadeh, A. A.; Jafarzadeh, M.; Gholami, F. Designing of a novel polyethersulfone (PES) ultrafiltration (UF) membrane with thermal stability and high fouling resistance using melamine-modified zirconium-based metal-organic framework (UiO-66-NH2/MOF). Sep. Purif. Technol. 2020, 251, 117010.
Ji, X. Y.; Lu, Q. F.; Guo, E. Y.; Li, D.; Yao, L. B.; Liu, H.; Li, X. L. Bamboo-shaped Zn2+-doped Li4Ti5O12 nanofibers: One-step controllable synthesis and high-performance lithium-ion batteries. J. Electrochem. Soc. 2018, 165, A534–A541.
Li, S. X.; Sun, S. L.; Wu, H. Z.; Wei, C. H.; Hu, Y. Effects of electron-donating groups on the photocatalytic reaction of MOFs. Catal. Sci. Technol. 2018, 8, 1696–1703.
Xu, C. Y.; Pan, Y. T.; Wan, G.; Liu, H.; Wang, L.; Zhou, H.; Yu, S. H.; Jiang, H. L. Turning on visible-light photocatalytic C–H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer. J. Am. Chem. Soc. 2019, 141, 19110–19117.
Popeney, C.; Guan, Z. B. Ligand electronic effects on late transition metal polymerization catalysts. Organometallics 2005, 24, 1145–1155.
Tan, X. N.; Zhang, J. L.; Shi, J. B.; Cheng, X. Y.; Tan, D. X.; Zhang, B. X.; Liu, L. F.; Zhang, F. Y.; Han, B. X.; Zheng, L. R. Fabrication of NH2-MIL-125 nanocrystals for high performance photocatalytic oxidation. Sustain. Energy Fuels 2020, 4, 2823–2830.
Wang, D. N.; Liu, L. J.; Sun, X. L.; Sham, T. K. Observation of lithiation-induced structural variations in TiO2 nanotube arrays by X-ray absorption fine structure. J. Mater. Chem. A 2015, 3, 412–419.
Xu, W. J.; Zhang, T. J.; Bai, R. S.; Zhang, P.; Yu, J. H. A one-step rapid synthesis of TS-1 zeolites with highly catalytically active mononuclear TiO6 species. J. Mater. Chem. A 2020, 8, 9677–9683.
Pan, T.; Shen, Y.; Wu, P.; Gu, Z. D.; Zheng, B.; Wu, J. S.; Li, S.; Fu, Y.; Zhang, W. N.; Huo, F. W. Thermal shrinkage behavior of metal-organic frameworks. Adv. Funct. Mater. 2020, 30, 2001389.
Bariki, R.; Majhi, D.; Das, K.; Behera, A.; Mishra, B. G. Facile synthesis and photocatalytic efficacy of UiO-66/CdIn2S4 nanocomposites with flowerlike 3D-microspheres towards aqueous phase decontamination of triclosan and H2 evolution. Appl. Catal. B: Environ. 2020, 270, 118882.
Zhao, Y. J.; Liu, Y.; Wang, Z. Z.; Ma, Y. R.; Zhou, Y. J.; Shi, X. F.; Wu, Q. Y.; Wang, X.; Shao, M. W.; Huang, H. et al. Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production. Appl. Catal. B: Environ. 2021, 289, 120035.
Ge, L. ; Han, C. C. Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity. Appl. Catal. B: Environ 2012, 117–118, 268–274.
Zhao, Y. B.; Zhang, P.; Yang, Z. C.; Li, L. N.; Gao, J. Y.; Chen, S.; Xie, T. F.; Diao, C. Z.; Xi, S. B.; Xiao, B. B. et al. Mechanistic analysis of multiple processes controlling solar-driven H2O2 synthesis using engineered polymeric carbon nitride. Nat. Commun. 2021, 12, 3701.
Li, X. Y.; Pi, Y. H.; Hou, Q. Q.; Yu, H.; Li, Z.; Li, Y. W.; Xiao J. Amorphous TiO2@NH2-MIL-125(Ti) homologous MOF-encapsulated heterostructures with enhanced photocatalytic activity. Chem. Commun. 2018, 54, 1917–1920.
Tang, S. F.; Yin, X. P.; Wang, G. Y.; Lu, X. L.; Lu, T. B. Single titanium-oxide species implanted in 2D g-C3N4 matrix as a highly efficient visible-light CO2 reduction photocatalyst. Nano Res. 2019, 12, 457–462.