Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The rapid spread of staphylococcus aureus (S. aureus) causes an increased morbidity and mortality, as well as great economic losses in the world. Anti-S. aureus infection becomes a major challenge for clinicians and nursing professionals to address drug resistance. Hence, it is urgent to explore high efficiency, low toxicity, and environmental-friendly methods against S. aureus. Metal-organic frameworks (MOFs) represent great potential in treating S. aureus infection due to the unique features of MOFs including tunable chemical constitute, open crystalline structure, and high specific surface area. Especially, these properties endow MOF-based materials outstanding antibacterial effect, which can be mainly attributed to the continuously released active components and the exerted catalytic activity to fight bacterial infection. Herein, the structural characteristics of MOFs and evaluation method of antimicrobial activity are briefly summarized. Then we systematically give an overview on their recent progress on antibacterial mechanisms, metal ion sustained-release system, controlled delivery system, catalytic system, and energy conversion system based on MOF materials. Finally, suggestions and direction for future research to develop and mechanism understand MOF-based materials are discussed in antibacterial application.
Mermel, L. A.; Cartony, J. M.; Covington, P.; Maxey, G.; Morse, D. Methicillin-resistant Staphylococcus aureus colonization at different body sites: A prospective, quantitative analysis. J. Clin. Microbiol. 2011, 49, 1119–1121.
Blicharz, L.; Michalak, M.; Szymanek-Majchrzak, K.; Młynarczyk, G.; Skowroński, K.; Rudnicka, L.; Samochocki, Z. The propensity to form biofilm in vitro by Staphylococcus aureus strains isolated from the anterior nares of patients with atopic dermatitis: Clinical associations. Dermatology 2021, 237, 528–534.
Von Eiff, C.; Becker, K.; Machka, K.; Stammer, H.; Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N. Engl. J. Med. 2001, 344, 11–16.
Sollid, J. U. E.; Furberg, A. S.; Hanssen, A. M.; Johannessen, M. Staphylococcus aureus: Determinants of human carriage. Infect. Genet. Evol. 2014, 21, 531–541.
Tong, S. Y. C.; Davis, J. S.; Eichenberger, E.; Holland, T. L.; Fowler, V. G. Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661.
Laupland, K. B. Incidence of bloodstream infection: A review of population-based studies. Clin. Microbiol. Infect. 2013, 19, 492–500.
Sampedro, G. R.; DeDent, A. C.; Becker, R. E. N.; Berube, B. J.; Gebhardt, M. J.; Cao, H. Y.; Bubeck Wardenburg, J. Targeting Staphylococcus aureus α-toxin as a novel approach to reduce severity of recurrent skin and soft-tissue infections. J. Infect. Dis. 2014, 210, 1012–1018.
Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A. K. M.; Wertheim, H. F. L.; Sumpradit, N.; Vlieghe, E.; Hara, G. L.; Gould, I. M.; Goossens, H. et al. Antibiotic resistance—The need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098.
Blair, J. M. A.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51.
Li, R.; Chen, T. T.; Pan, X. L. Metal-organic-framework-based materials for antimicrobial applications. ACS Nano 2021, 15, 3808–3848.
Pettinari, C.; Pettinari, R.; Di Nicola, C.; Tombesi, A.; Scuri, S.; Marchetti, F. Antimicrobial MOFs. Coord. Chem. Rev. 2021, 446, 214121.
Nong, W. Q.; Wu, J.; Ghiladi, R. A.; Guan, Y. G. The structural appeal of metal-organic frameworks in antimicrobial applications. Coord. Chem. Rev. 2021, 442, 214007.
Gorai, T.; Schmitt, W.; Gunnlaugsson, T. Highlights of the development and application of luminescent lanthanide based coordination polymers, MOFs and functional nanomaterials. Dalton Trans. 2021, 50, 770–784.
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.
Giliopoulos, D.; Zamboulis, A.; Giannakoudakis, D.; Bikiaris, D.; Triantafyllidis, K. Polymer/metal organic framework (MOF) nanocomposites for biomedical applications. Molecules 2020, 25, 185.
Liu, Y. W.; Zhou, L. Y.; Dong, Y.; Wang, R.; Pan, Y.; Zhuang, S. Z.; Liu, D.; Liu, J. Q. Recent developments on MOF-based platforms for antibacterial therapy. RSC Med. Chem. 2021, 12, 915–928.
Williams, R. E. O. Healthy carriage of Staphylococcus aureus: Its prevalence and importance. Bacteriol. Rev. 1963, 27, 56–71.
Wertheim, H. F. L.; Melles, D. C.; Vos, M. C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H. A.; Nouwen, J. L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762.
Boyle-Vavra, S.; Daum, R. S. Community-acquired methicillinresistant Staphylococcus aureus: The role of Panton-Valentine leukocidin. Lab. Invest. 2007, 87, 3–9.
Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532.
Archer, G. L. Staphylococcus aureus: A well-armed pathogen. Clin. Infect. Dis. 1998, 26, 1179–1181.
Boyce, J. M.; Pittet, D. Guideline for hand hygiene in health-care settings. Recommendations of the healthcare infection control practices advisory committee and the HICPAC/SHEA/APIC/IDSA hand hygiene task force. Society for healthcare epidemiology of America/Association for professionals in infection control/infectious diseases society of America. MMWR Recomm. Rep. 2002, 51, 1–45.
Sherertz, R. J.; Reagan, D. R.; Hampton, K. D.; Robertson, K. L.; Streed, S. A.; Hoen, H. M.; Thomas, R.; Gwaltney, J. M. Jr. A cloud adult: The Staphylococcus aureus–virus interaction revisited. Ann. Intern. Med. 1996, 124, 539–547.
Zimmerli, W.; Sendi, P. Pathogenesis of implant-associated infection: The role of the host. Semin. Immunopathol. 2011, 33, 295–306.
Foster, T. J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 2005, 3, 948–958.
Gladstone, G. P. Van Heyningen, W. E. Staphylococcal leucocidins. Br. J. Exp. Pathol. 1957, 38, 123–137.
Grumann, D.; Nübel, U.; Bröker, B. M. Staphylococcus aureus toxins—Their functions and genetics. Infect. Genet. Evol. 2014, 21, 583–592.
Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318.
Manna, D. K.; Mandal, A. K.; Sen, I. K.; Maji, P. K.; Chakraborti, S.; Chakraborty, R.; Islam, S. S. Antibacterial and DNA degradation potential of silver nanoparticles synthesized via green route. Int. J. Biol. Macromol. 2015, 80, 455–459.
Alabi, A. S.; Frielinghaus, L.; Kaba, H.; Kösters, K.; Huson, M. A. M.; Kahl, B. C.; Peters, G.; Grobusch, M. P.; Issifou, S.; Kremsner, P. G. et al. Retrospective analysis of antimicrobial resistance and bacterial spectrum of infection in Gabon, Central Africa. BMC Infect. Dis. 2013, 13, 455.
Klein, E. Y.; Sun, L.; Smith, D. L.; Laxminarayan, R. The changing epidemiology of methicillin-resistant Staphylococcus aureus in the United States: A national observational study. Am. J. Epidemiol. 2013, 177, 666–674.
Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res. Int. 2016, 2016, 2475067.
Ansari, S.; Nepal, H. P.; Gautam, R.; Shrestha, S.; Chhetri, M. R.; Chapagain, M. L. Staphylococcus Aureus: Methicillin resistance and small colony variants from pyogenic infections of skin, soft tissue and bone. J. Nepal Health Res. Counc. 2015, 13, 126–132.
Lakhundi, S.; Zhang, K. Y. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020–18.
Ansari, S.; Jha, R. K.; Mishra, S. K.; Tiwari, B. R.; Asaad, A. M. Recent advances in Staphylococcus aureus infection: Focus on vaccine development. Infect. Drug Resist. 2019, 12, 1243–1255.
Johnson, N. B.; Hayes, L. D.; Brown, K.; Hoo, E. C.; Ethier, K. A. CDC national health report: Leading causes of morbidity and mortality and associated behavioral risk and protective factors United States, 2005–2013. MMWR Suppl. 2014, 63, 3–27.
Jean, S. S.; Hsueh, P. R. High burden of antimicrobial resistance in Asia. Int. J. Antimicrob. Agents 2011, 37, 291–295.
Wolk, D. M.; Struelens, M. J.; Pancholi, P.; Davis, T.; Della-Latta, P.; Fuller, D.; Picton, E.; Dickenson, R.; Denis, O.; Johnson, D. et al. Rapid detection of Staphylococcus aureus and methicillinresistant S. aureus (MRSA) in wound specimens and blood cultures: Multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. J. Clin. Microbiol. 2009, 47, 823–826.
Hurley, J. C. Risk of death from methicillin-resistant Staphylococcus aureus bacteraemia: A meta-analysis. Med. J. Aust. 2002, 176, 188.
Fortuin-de Smidt, M. C.; Singh-Moodley, A.; Badat, R.; Quan, V.; Kularatne, R.; Nana, T.; Lekalakala, R.; Govender, N. P.; Perovic, O. Staphylococcus aureus bacteraemia in Gauteng academic hospitals, South Africa. Int. J. Infect. Dis. 2015, 30, 41–48.
Zou, L. L.; Wang, J.; Gao, Y.; Ren, X. Y.; Rottenberg, M. E.; Lu, J.; Holmgren, A. Synergistic antibacterial activity of silver with antibiotics correlating with the upregulation of the ROS production. Sci. Rep. 2018, 8, 11131.
Mohammed, Y. H. E.; Manukumar, H. M.; Rakesh, K. P.; Karthik, C. S.; Mallu, P.; Qin, H. L. Vision for medicine: Staphylococcus aureus biofilm war and unlocking key’s for anti-biofilm drug development. Microb. Pathog. 2018, 123, 339–347.
Yougbare, S.; Chang, T. K.; Tan, S. H.; Kuo, J. C.; Hsu, P. H.; Su, C. Y.; Kuo, T. R. Antimicrobial gold nanoclusters: Recent developments and future perspectives. Int. J. Mol. Sci. 2019, 20, 2924.
Fletcher, S. Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environ. Health Prev. Med. 2015, 20, 243–252.
Andersson, D. I.; Hughes, D. Kubicek-Sutherland, J. Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updates 2016, 26, 43–57.
Archer, N. K.; Mazaitis, M. J.; Costerton, J. W.; Leid, J. G.; Powers, M. E.; Shirtliff, M. E. Staphylococcus aureus biofilms: Properties, regulation, and roles in human disease. Virulence 2011, 2, 445–459.
Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.
Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. B. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.
Xue, Y. P.; Zhao, G. C.; Yang, R. Y.; Chu, F.; Chen, J.; Wang, L.; Huang, X. B. 2D metal-organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications. Nanoscale 2021, 13, 3911–3936.
Shen, M. F.; Forghani, F.; Kong, X. Q.; Liu, D. D.; Ye, X. Q.; Chen, S. G.; Ding, T. Antibacterial applications of metal-organic frameworks and their composites. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1397–1419.
Usman, K. A. S.; Maina, J. W.; Seyedin, S.; Conato, M. T.; Payawan, L. M.; Dumée, L. F.; Razal, J. M. Downsizing metalorganic frameworks by bottom-up and top-down methods. NPG Asia Mater. 2020, 12, 58.
Zhang, Y. M.; Zhang, X.; Song, J.; Jin, L. M.; Wang, X. T.; Quan, C. S. Ag/H-ZIF-8 nanocomposite as an effective antibacterial agent against pathogenic bacteria. Nanomaterials 2019, 9, 1579.
Tippayawat, P.; Phromviyo, N.; Boueroy, P.; Chompoosor, A. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ 2016, 4, e2589.
Wang, H.; Synatschke, C. V.; Raup, A.; Jérôme, V.; Freitag, R.; Agarwal, S. Oligomeric dual functional antibacterial polycaprolactone. Polym. Chem. 2014, 5, 2453–2460.
Mao, C. Y.; Xiang, Y. M.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; Li, Z. Y.; Zhu, S. L.; Zheng, Y. F.; Yeung, K. W. K.; Wu, S. L. Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing. ACS Nano 2018, 12, 1747–1759.
Liu, Z. W.; Tan, L.; Liu, X. M.; Liang, Y. Q.; Zheng, Y. F.; Yeung, K. W. K.; Cui, Z. D.; Zhu, S. L.; Li, Z. Y.; Wu, S. L. Zn2+-assisted photothermal therapy for rapid bacteria-killing using biodegradable humic acid encapsulated MOFs. Colloids Surf. B Biointerfaces 2020, 188, 110781.
Pang, X.; Xiao, Q. C.; Cheng, Y.; Ren, E.; Lian, L. L.; Zhang, Y.; Gao, H. Y.; Wang, X. Y.; Leung, W.; Chen, X. Y. et al. Bacteria responsive nanoliposomes as smart sonotheranostics for multidrug resistant bacterial infections. ACS Nano 2019, 13, 2427–2438.
Zhang, L.; Liu, Z. W.; Deng, Q. Q.; Sang, Y. J.; Dong, K.; Ren, J. S.; Qu, X. G. Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition. Angew. Chem. Int. Ed. 2021, 60, 3469–3474.
Li, T.; Qiu, H. Q.; Liu, N.; Li, J. W.; Bao, Y. H.; Tong, W. J. Construction of self-activated cascade metal-organic framework/enzyme hybrid nanoreactors as antibacterial agents. Colloids Surf. B Biointerfaces 2020, 191, 111001.
Lin, S.; Liu, X. M.; Tan, L.; Cui, Z. D.; Yang, X. J.; Yeung, K. W. K.; Pan, H. B.; Wu, S. L. Porous iron-carboxylate metal-organic framework: A novel bioplatform with sustained antibacterial efficacy and nontoxicity. ACS Appl. Mater. Interfaces 2017, 9, 19248–19257.
Fan, X.; Yang, F.; Huang, J. B.; Yang, Y.; Nie, C. X.; Zhao, W. F.; Ma, L.; Cheng, C.; Zhao, C. S.; Haag, R. Metal-organic-framework derived 2D carbon nanosheets for localized multiple bacterial eradication and augmented anti-infective therapy. Nano Lett. 2019, 19, 5885–5896.
Luo, Y.; Li, J.; Liu, X. M.; Tan, L.; Cui, Z. D.; Feng, X. B.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L. et al. Dual metal-organic framework heterointerface. ACS Cent. Sci. 2019, 5, 1591–1601.
Ge, C. C.; Wu, R. F.; Chong, Y.; Fang, G.; Jiang, X. M.; Pan, Y.; Chen, C. Y.; Yin, J. J. Synthesis of Pt hollow nano dendrites with enhanced peroxidase-like activity against bacterial infections: Implication for wound healing. Adv. Funct. Mater. 2018, 28, 1801484.
Zirak Hassan Kiadeh, S.; Ghaee, A.; Farokhi, M.; Nourmohammadi, J.; Bahi, A.; Ko, F. K. Electrospun pectin/modified copper-based metal-organic framework (MOF) nanofibers as a drug delivery system. Int. J. Biol. Macromol. 2021, 173, 351–365.
Xiang, Y. M.; Mao, C. Y.; Liu, X. M.; Cui, Z. D.; Jing, D. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; Zheng, Y. F. et al. Rapid and superior bacteria killing of carbon quantum dots/ZnO decorated injectable folic acid-conjugated PDA hydrogel through dual-light triggered ROS and membrane permeability. Small 2019, 15, 1900322.
Geveke, D. J.; Gurtler, J.; Zrang, H. Q. Inactivation of Lactobacillus plantarum in apple cider, using radio frequency electric fields. J. Food. Prot. 2009, 72, 656–661.
Donlan, R. M.; Costerton, J. W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193.
Liu, Z. W.; Wang, F. M.; Ren, J. S.; Qu, X. G. A series of MOF/Cebased nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials 2019, 208, 21–31.
Haas, K. L.; Franz, K. J. Application of metal coordination chemistry to explore and manipulate cell biology. Chem. Rev. 2009, 109, 4921–4960.
Ma, Z.; Jacobsen, F. E.; Giedroc, D. P. Coordination chemistry of bacterial metal transport and sensing. Chem. Rev. 2009, 109, 4644–4681.
Pearson, R. G. Hard and soft acids and bases—The evolution of a chemical concept. Coord. Chem. Rev. 1990, 100, 403–425.
Nies, D. H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 2003, 27, 313–339.
Harrison, J. J.; Ceri, H.; Turner, R. J. Multimetal resistance and tolerance in microbial biofilms. Nat. Rev. Microbiol. 2007, 5, 928–938.
Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.
Feng, M. B.; Zhang, P.; Zhou, H. C.; Sharma, V. K. Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: A review. Chemosphere 2018, 209, 783–800.
Gordon, O.; Slenters, T. V.; Brunetto, P. S.; Villaruz, A. E.; Sturdevant, D. E.; Otto, M.; Landmann, R.; Fromm, K. M. Silver coordination polymers for prevention of implant infection: Thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob. Agents Chemother. 2010, 54, 4208–4218.
Lemire, J. A.; Harrison, J. J.; Turner, R. J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384.
Singh, S. B.; Barrett, J. F. Empirical antibacterial drug discovery foundation in natural products. Biochem. Pharmacol. 2006, 71, 1006–1015.
Fasnacht, M.; Polacek, N. Oxidative stress in bacteria and the central dogma of molecular biology. Front. Mol. Biosci. 2021, 8, 671037.
West, J. D.; Marnett, L. J. Endogenous reactive intermediates as modulators of cell signaling and cell death. Chem. Res. Toxicol. 2006, 19, 173–194.
Van Acker, H.; Coenye, T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends Microbiol. 2017, 25, 456–466.
Kiley, P. J.; Beinert, H. The role of Fe-S proteins in sensing and regulation in bacteria. Curr. Opin. Microbiol. 2003, 6, 181–185.
Soltani, S.; Akhbari, K. Cu-BTC metal-organic framework as a biocompatible nanoporous carrier for chlorhexidine antibacterial agent. J. Biol. Inorg. Chem 2022, 27, 81–81.
Yu, P. L.; Han, Y. J.; Han, D. L.; Liu, X. M.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; Wu, S. L. In-situ sulfuration of Cu-based metalorganic framework for rapid near-infrared light sterilization. J. Hazard. Mater. 2020, 390.
Ren, X. Y.; Yang, C. Y.; Zhang, L.; Li, S. H.; Shi, S.; Wang, R.; Zhang, X.; Yue, T. L.; Sun, J.; Wang, J. L. Copper metal-organic frameworks loaded on chitosan film for the efficient inhibition of bacteria and local infection therapy. Nanoscale 2019, 11, 11830–11838.
Wang, H. T.; Ao, D.; Lu, M. C.; Chang, N. Alteration of the morphology of polyvinylidene fluoride membrane by incorporating MOF-199 nanomaterials for improving water permeation with antifouling and antibacterial property. J. Chin. Chem. Soc. 2020, 67, 1807–1817.
Singbumrung, K.; Motina, K.; Pisitsak, P.; Chitichotpanya, P.; Wongkasemjit, S.; Inprasit, T. Preparation of Cu-BTC/PVA fibers with antibacterial applications. Fibers Polym. 2018, 19, 1373–1378.
Wang, S. Y.; Yan, F.; Ren, P.; Li, Y.; Wu, Q.; Fang, X. D.; Chen, F. F.; Wang, C. Incorporation of metal-organic frameworks into electrospun chitosan/poly (vinyl alcohol) nanofibrous membrane with enhanced antibacterial activity for wound dressing application. Int. J. Biol. Macromol. 2020, 158, 9–17.
Gizer, S. G.; Sahiner, N. The effect of sulphur on the antibacterial properties of succinic acid-Cu(II) and mercaptosuccinic acid-Cu(II) MOFs. Inorg. Chim. Acta 2021, 528, 120611.
Han, D. L.; Han, Y. J.; Li, J.; Liu, X. M.; Yeung, K. W. K.; Zheng, Y. F.; Cui, Z. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y. et al. Enhanced photocatalytic activity and photothermal effects of Cu doped metal-organic frameworks for rapid treatment of bacteria infected wounds. Appl. Catal. B-Environ. 2020, 261, 118248.
Liu, X. P.; Yan, Z. Q.; Zhang, Y.; Liu, Z. W.; Sun, Y. H.; Ren, J. S.; Qu, X. G. Two-dimensional metal-organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing. ACS Nano 2019, 13, 5222–5230.
Allahbakhsh, A.; Jarrahi, Z.; Farzi, G.; Shavandi, A. Three dimensional nanoporous Cu-BTC/graphene oxide nanocomposites with engineered antibacterial properties synthesized via a one-pot solvosonication process. Mater. Chem. Phys. 2022, 277, 125502.
Gwon, K.; Kim, Y.; Cho, H.; Lee, S.; Yang, S. H.; Kim, S. J.; Lee, D. N. Robust copper metal-organic framework-embedded polysiloxanes for biomedical applications: Its antibacterial effects on MRSA and in vitro cytotoxicity. Nanomaterials 2021, 11, 719.
Azizabadi, O.; Akbarzadeh, F.; Danshina, S.; Chauhan, N. P. S. Sargazi, G. An efficient ultrasonic assisted reverse micelle synthesis route for Fe3O4@Cu-MOF/core–shell nanostructures and its antibacterial activities. J. Solid State Chem. 2021, 294, 121897.
Can, M.; Demirci, S.; Sunol, A. K.; Sahiner, N. An amino acid, Lglutamic acid-based metal-organic frameworks and their antibacterial, blood compatibility, biocompatibility, and sensor properties. Microporous Mesoporous Mater. 2020, 309, 110533.
Liu, Z.; Ye, J. W.; Rauf, A.; Zhang, S. Q.; Wang, G. Y.; Shi, S. Q.; Ning, G. L. A flexible fibrous membrane based on copper(II) metalorganic framework/poly(lactic acid) composites with superior antibacterial performance. Biomater. Sci. 2021, 9, 3851–3859.
Bhardwaj, N.; Pandey, S. K.; Mehta, J.; Bhardwaj, S. K.; Kim, K. H.; Deep, A. Bioactive nano-metal-organic frameworks as antimicrobials against Gram-positive and Gram-negative bacteria. Toxicol. Res. 2018, 7, 931–941.
Restrepo, J.; Serroukh, Z.; Santiago-Morales, J.; Aguado, S.; Gómez-Sal, P.; Mosquera, M. E. G.; Rosal, R. An antibacterial ZnMOF with hydrazinebenzoate linkers. Eur. J. Inorg. Chem. 2017, 2017, 574–580.
Tamames-Tabar, C.; Imbuluzqueta, E.; Guillou, N.; Serre, C.; Miller, S. R.; Elkaïm, E.; Horcajada, P.; Blanco-Prieto, M. J. A Zn azelate MOF: Combining antibacterial effect. Crystengcomm 2015, 17, 456–462.
Yang, Y.; Wu, X. Z.; He, C.; Huang, J. B.; Yin, S. Q.; Zhou, M.; Ma, L.; Zhao, W. F.; Qiu, L.; Cheng, C. et al. Metal-organic framework/Ag-based hybrid nanoagents for rapid and synergistic bacterial eradication. ACS Appl. Mater. Interfaces 2020, 12, 13698–13708.
Ahmed, S. A.; Bagchi, D.; Katouah, H. A.; Hasan, M. N.; Altass, H. M.; Pal, S. K. Enhanced water stability and photoresponsivity in metal-organic Framework (MOF): A potential tool to combat drug resistant bacteria. Sci. Rep. 2019, 9, 19372.
Ahmad, N.; Samavati, A.; Nordin, N. A. H. M.; Jaafar, J.; Ismail, A. F.; Malek, N. A. N. N. Enhanced performance and antibacterial properties of amine-functionalized ZIF-8-decorated GO for ultrafiltration membrane. Sep. Purif. Technol. 2020, 239, 116554.
Sacourbaravi, R.; Ansari-Asl, Z.; Kooti, M.; Nobakht, V.; Darabpour, E. Fabrication of Ag NPs/Zn-MOF nanocomposites and their application as antibacterial agents. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4615–4621.
Balasamy, R. J.; Ravinayagam, V.; Alomari, M.; Ansari, M. A.; Almofty, S. A.; Rehman, S.; Dafalla, H.; Marimuthu, P. R.; Akhtar, S.; Al Hamad, M. Cisplatin delivery, anticancer and antibacterial properties of Fe/SBA-16/ZIF-8 nanocomposite. RSC Adv. 2019, 9, 42395–42408.
Chen, X. Y.; Ji, P. A microporous Zn(II)-MOF for solvent-free cyanosilylation and treatment effect against bacterial infection on burn patients via inhibiting the Staphylococcus aureus biofilm formation. J. Inorg. Organomet. Polym. Mater. 2021, 31, 492–499.
Nakhaei, M.; Akhbari, K.; Kalati, M.; Phuruangrat, A. Antibacterial activity of three zinc-terephthalate MOFs and its relation to their structural features. Inorg. Chim. Acta 2021, 522.
Hao, Q. Q.; Cheng, L.; Dong, Z. Two Zn(II)-organic frameworks: Catalytic knoevenagel condensation and treatment activity on spine surgery incision infection via inhibiting Staphylococcus aureus biofilms formation. J. Exp. Nanosci. 2021, 16, 31–42.
Dutta, B.; Pal, K.; Jana, K.; Sinha, C.; Mir, M. H. Fabrication of a Zn(II)-based 2D pillar bilayer metal-organic framework for antimicrobial activity. Chemistryselect 2019, 4, 9947–9951.
Hu, Y. C.; Yang, H.; Wang, R. H.; Duan, M. L. Fabricating Ag@MOF-5 nanoplates by the template of MOF-5 and evaluating its antibacterial activity. Colloids Surf. A:Physicochem. Eng. Aspects 2021, 626, 127093.
Xie, B. P.; Chai, J. W.; Fan, C.; Ouyang, J. H.; Duan, W. J.; Sun, B.; Chen, J.; Yuan, L. X.; Xu, X. Q.; Chen, J. X. Water-stable silver based metal-organic frameworks of quaternized carboxylates and their antimicrobial activity. ACS Appl. Bio Mater. 2020, 3, 8525–8531.
Huang, X. J.; Yu, S. J.; Lin, W. X.; Yao, X.; Zhang, M. Y.; He, Q.; Fu, F. Y.; Zhu, H. L.; Chen, J. J. A metal-organic framework MIL- 53(Fe) containing sliver ions with antibacterial property. J. Solid State Chem. 2021, 302, 122442.
Arenas-Vivo, A.; Amariei, G.; Aguado, S.; Rosal, R.; Horcajada, P. An Ag-loaded photoactive nano-metal organic framework as a promising biofilm treatment. Acta Biomater. 2019, 97, 490–500.
Zhang, M.; Wang, G. H.; Wang, D.; Zheng, Y. Q.; Li, Y. X.; Meng, W. Q.; Zhang, X.; Du, F. F.; Lee, S. Ag@MOF-loaded chitosan nanoparticle and polyvinyl alcohol/sodium alginate/chitosan bilayer dressing for wound healing applications. Int. J. Biol. Macromol. 2021, 175, 481–494.
Hajibabaei, M.; Zendehdel, R.; Panjali, Z. Imidazole-functionalized Ag/MOFs as promising scaffolds for proper antibacterial activity and toxicity reduction of Ag nanoparticles. J. Inorg. Organomet. P 2020, 30, 4622–4626.
Lu, X. Y.; Ye, J. W.; Zhang, D. K.; Xie, R. X.; Bogale, R. F.; Sun, Y.; Zhao, L. M.; Zhao, Q.; Ning, G. L. Silver carboxylate metalorganic frameworks with highly antibacterial activity and biocompatibility. J. Inorg. Biochem. 2014, 138, 114–121.
Jaros, S. W.; da Silva, M. F. C. G.; Florek, M.; Oliveira, M. C.; Smoleński, P.; Pombeiro, A. J. L. Kirillov, A. M. Aliphatic dicarboxylate directed assembly of silver(I) 1, 3, 5-triaza-7-phosphaadamantane coordination networks: Topological versatility and antimicrobial activity. Cryst. Growth Des. 2014, 14, 5408–5417.
Zirehpour, A.; Rahimpour, A.; Shamsabadi, A. A.; Sharifian, G. M.; Soroush, M. Mitigation of thin-film composite membrane biofouling via immobilizing nano-sized biocidal reservoirs in the membrane active layer. Environ. Sci. Technol. 2017, 51, 5511–5522.
Seyedpour, S. F.; Firouzjaei, M. D.; Rahimpour, A.; Zolghadr, E.; Shamsabadi, A. A.; Das, P.; Afkhami, F. A.; Sadrzadeh, M.; Tiraferri, A.; Elliott, M. Toward sustainable tackling of biofouling implications and improved performance of TFC FO membranes modified by Ag-MOF nanorods. ACS Appl. Mater. Interfaces 2020, 12, 38285–38298.
Fan, X.; Yang, F.; Nie, C. X.; Yang, Y.; Ji, H. F.; He, C.; Cheng, C.; Zhao, C. S. Mussel-inspired synthesis of NIR-responsive and biocompatible Ag-graphene 2D nanoagents for versatile bacterial disinfections. ACS Appl. Mater. Interfaces 2018, 10, 296–307.
Yang, Y.; Ma, L.; Cheng, C.; Deng, Y. Y.; Huang, J. B.; Fan, X.; Nie, C. X.; Zhao, W. F.; Zhao, C. S. Nonchemotherapic and robust dual-responsive nanoagents with on-demand bacterial trapping, ablation, and release for efficient wound disinfection. Adv. Funct. Mater. 2018, 28, 1705708.
D'Agostino, A.; Taglietti, A.; Desando, R.; Bini, M.; Patrini, M.; Dacarro, G.; Cucca, L.; Pallavicini, P.; Grisoli, P. Bulk surfaces coated with triangular silver nanoplates: Antibacterial action based on silver release and photo-thermal effect. Nanomaterials 2017, 7, 7.
Zhang, C.; Hu, D. F.; Xu, J. W.; Ma, M. Q.; Xing, H. B.; Yao, K.; Ji, J.; Xu, Z. K. Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity. ACS Nano 2018, 12, 12347–12356.
Li, Y. T.; Jin, J.; Wang, D. W.; Lv, J. W.; Hou, K.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Coordination-responsive drug release inside gold nanorod@metal-organic framework core–shell nanostructures for near-infrared-induced synergistic chemophotothermal therapy. Nano Res. 2018, 11, 3294–3305.
Leighton, T. G.; Pickworth, M. J. W.; Walton, A. J.; Dendy, P. P. Studies of the cavitational effects of clinical ultrasound by sonoluminescence: 1. Correlation of sonoluminescence with the standing wave pattern in an acoustic field produced by a therapeutic unit. Phys. Med. Biol. 1988, 33, 1239–1248.
Pan, X. T.; Wang, H. Y.; Wang, S. H.; Sun, X.; Wang, L. J.; Wang, W. W.; Shen, H. Y.; Liu, H. Y. Sonodynamic therapy (SDT): A novel strategy for cancer nanotheranostics. Sci. China Life Sci. 2018, 61, 415–426.
Pan, X. T.; Bai, L. X.; Wang, H.; Wu, Q. Y.; Wang, H. Y.; Liu, S.; Xu, B. L.; Shi, X. H.; Liu, H. Y. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv. Mater. 2018, 30, 1800180.
Karimi Alavijeh, R.; Beheshti, S.; Akhbari, K.; Morsali, A. Investigation of reasons for metal-organic framework’s antibacterial activities. Polyhedron 2018, 156, 257–278.
Huxford, R. C.; Della Rocca, J.; Lin, W. B. Metal-organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol. 2010, 14, 262–268.
Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.
Liang, S.; Wu, X. L.; Xiong, J.; Zong, M. H.; Lou, W. Y. Metalorganic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord. Chem. Rev. 2020, 406, 213149.
McGuire, C. V.; Forgan, R. S. The surface chemistry of metalorganic frameworks. Chem. Commun. 2015, 51, 5199–5217.
Kitagawa, S.; Furukawa, S. Porous coordination polymers having guest accessible functional organic sites. Acta Cryst. 2008, A64, C104.
Miller, S. R.; Heurtaux, D.; Baati, T.; Horcajada, P.; Grenèche, J. M.; Serre, C. Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chem. Commun. 2010, 46, 4526–4528.
Xing, L.; Cao, Y. Y.; Che, S. A. Synthesis of core–shell coordination polymernanoparticles (CPNs) for pH-responsive controlled drug release. Chem. Commun. 2012, 48, 5995–5997.
Lashkari, E.; Wang, H.; Liu, L. S.; Li, J.; Yam, K. Innovative application of metal-organic frameworks for encapsulation and controlled release of allyl isothiocyanate. Food Chem. 2017, 221, 926–935.
Kornblatt, A. P.; Nicoletti, V. G.; Travaglia, A. The neglected role of copper ions in wound healing. J. Inorg. Biochem. 2016, 161, 1–8.
Mallick, S.; Sharma, S.; Banerjee, M.; Ghosh, S. S.; Chattopadhyay, A.; Paul, A. Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications. ACS Appl. Mater. Interfaces 2012, 4, 1313–1323.
Chen, S.; Tang, F.; Tang, L. Z.; Li, L. D. Synthesis of Cu nanoparticle hydrogel with self-healing and photothermal properties. ACS Appl. Mater. Interfaces 2017, 9, 20895–20903.
Abbasi, A. R.; Akhbari, K.; Morsali, A. Dense coating of surface mounted CuBTC metal-organic framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrason. Sonochem. 2012, 19, 846–852.
Zhang, S. Q.; Ye, J. W.; Sun, Y.; Kang, J.; Liu, J. H.; Wang, Y.; Li, Y. C.; Zhang, L. H.; Ning, G. L. Electrospun fibrous mat based on silver(I) metal-organic frameworks-polylactic acid for bacterial killing and antibiotic-free wound dressing. Chem. Eng. J. 2020, 390, 124523.
da Silv Pinto, M.; Sierra-Avila, C. A.; Hinestroza, J. P. In situ synthesis of a Cu-BTC metal-organic framework (MOF 199) onto cellulosic fibrous substrates: Cotton. Cellulose 2012, 19, 1771–1779.
Emam, H. E.; Darwesh, O. M.; Abdelhameed, R. M. In-growth metal organic framework/synthetic hybrids as antimicrobial fabrics and its toxicity. Colloids Surf. B Biointerfaces 2018, 165, 219–228.
Kohsari, I.; Shariatinia, Z.; Pourmortazavi, S. M. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles. Int. J. Biol. Macromol. 2016, 91, 778–788.
Mohanta, G. C.; Pandey, S. K.; Maurya, I. K.; Sahota, T. S.; Mondal, S. K.; Deep, A. Synergistic antimicrobial activity in ampicillin loaded core–shell ZnO@ZIF-8 Particles. ChemistrySelect 2019, 4, 12002–12009.
Tao, B. L.; Zhao, W. K.; Lin, C. C.; Yuan, Z.; He, Y.; Lu, L.; Chen, M. W.; Ding, Y.; Yang, Y. L.; Xia, Z. Z. L. et al. Surface modification of titanium implants by ZIF-8@Levo/LBL coating for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration. Chem. Eng. J. 2020, 390, 124621.
Fan, X.; Yang, F.; Nie, C. X.; Ma, L.; Cheng, C.; Haag, R. Biocatalytic nanomaterials: A new pathway for bacterial disinfection. Adv. Mater. 2021, 33, 2100637.
Rubin, H. N.; Neufeld, B. H.; Reynolds, M. M. Surface-anchored metal-organic framework-cotton material for tunable antibacterial copper delivery. ACS Appl. Mater. Interfaces 2018, 10, 15189–15199.
Peng, C.; Kuai, Z. Y.; Zeng, T. Q.; Yu, Y.; Li, Z. F.; Zuo, J. T.; Chen, S.; Pan, S. J.; Li, L. WO3 nanorods/MXene composite as high performance electrode for supercapacitors. J. Alloys Compd. 2019, 810, 151928.
Abednejad, A.; Ghaee, A.; Nourmohammadi, J.; Mehrizi, A. A. Hyaluronic acid/carboxylated zeolitic imidazolate framework film with improved mechanical and antibacterial properties. Carbohydr. Polym. 2019, 222, 115033.
Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J. et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 7240.
Li, S. X.; Wang, K. K.; Shi, Y. J.; Cui, Y. N.; Chen, B. L.; He, B.; Dai, W. B.; Zhang, H.; Wang, X. Q.; Zhong, C. L. et al. Novel biological functions of ZIF-NP as a delivery vehicle: High pulmonary accumulation, favorable biocompatibility, and improved therapeutic outcome. Adv. Funct. Mater. 2016, 26, 2715–2727.
Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. , Int. Ed. 2006, 45, 1557–1559.
Esfahanian, M.; Ghasemzadeh, M. A.; Razavian, S. M. H. Synthesis, identification and application of the novel metal-organic framework Fe3O4@PAA@ZIF-8 for the drug delivery of ciprofloxacin and investigation of antibacterial activity. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2024–2030.
Bradshaw, D.; Garai, A.; Huo, J. Metal-organic framework growth at functional interfaces: Thin films and composites for diverse applications. Chem. Soc. Rev. 2012, 41, 2344–2381.
Tejero, R.; Anitua, E.; Orive, G. Toward the biomimetic implant surface: Biopolymers on titanium-based implants for bone regeneration. Prog. Polym. Sci. 2014, 39, 1406–1447.
Tan, L.; Li, J.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; Zhu, S. L.; Li, Z. Y.; Yuan, X. B.; Zheng, Y. F.; Yeung, K. W. K. et al. Rapid biofilm eradication on bone implants using red phosphorus and nearinfrared light. Adv. Mater. 2018, 30, 1801808.
Shen, X. K.; Zhang, Y. Y.; Ma, P. P.; Sutrisno, L.; Luo, Z.; Hu, Y.; Yu, Y. L.; Tao, B. L.; Li, C. Q.; Cai, K. Y. Fabrication of magnesium/zinc-metal organic framework on titanium implants to inhibit bacterial infection and promote bone regeneration. Biomaterials 2019, 212, 1–16.
Joubani, M. N.; Zanjanchi, M. A.; Sohrabnezhad, S. A novel Ag/Ag3PO4-IRMOF-1 nanocomposite for antibacterial application in the dark and under visible light irradiation. Appl. Organomet. Chem. 2020, 34, e5575.
Tao, B. L.; Lin, C. C.; He, Y.; Yuan, Z.; Chen, M. W.; Xu, K.; Li, K.; Guo, A.; Cai, K. Y.; Chen, L. X. Osteoimmunomodulation mediating improved osteointegration by OGP-loaded cobalt-metal organic framework on titanium implants with antibacterial property. Chem. Eng. J. 2021, 423, 130176.
Kim, Y. K.; Han, S. W.; Min, D. H. Graphene oxide sheath on Ag nanoparticle/graphene hybrid films as an antioxidative coating and enhancer of surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 2012, 4, 6545–6551.
Khanna, P. K.; Singh, N.; Kulkarni, D.; Deshmukh, S.; Charan, S.; Adhyapak, P. V. Water based simple synthesis of re-dispersible silver nano-particles. Mater. Lett. 2007, 61, 3366–3370.
Chen, S. Y.; Lu, J.; You, T. H.; Sun, D. P. Metal-organic frameworks for improving wound healing. Coord. Chem. Rev. 2021, 439, 213929.
Mao, D.; Hu, F.; Kenry; Ji, S. L.; Wu, W. B.; Ding, D.; Kong, D. L.; Liu, B. Metal-organic-framework-assisted in vivo bacterial metabolic labeling and precise antibacterial therapy. Adv. Mater. 2018, 30, 1706831.
Blissett, A. R.; Deng, B.; Wei, P.; Walsh, K. J.; Ollander, B.; Sifford, J.; Sauerbeck, A. D.; McComb, D. W.; McTigue, D. M.; Agarwal, G. Sub-cellular in-situ characterization of Ferritin(iron) in a rodent model of spinal cord injury. Sci. Rep. 2018, 8, 3567.
Jambovane, S. R.; Nune, S. K.; Kelly, R. T.; McGrail, B. P.; Wang, Z. M.; Nandasiri, M. I.; Katipamula, S.; Trader, C.; Schaef, H. T. Continuous, one-pot synthesis and post-synthetic modification of nanoMOFs using droplet nanoreactors. Sci. Rep. 2016, 6, 36657.
Wang, D. D.; Zhou, J. J.; Chen, R. H.; Shi, R. H.; Xia, G. L.; Zhou, S.; Liu, Z. B.; Zhang, N. Q.; Wang, H. B.; Guo, Z. et al. Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe3O4@C@MIL-100(Fe) nanoparticles. Biomaterials 2016, 107, 88–101.
Khatoon, Z.; McTiernan, C. D.; Suuronen, E. J.; Mah, T. F.; Alarcon, E. I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, e01067.
Easun, T. L.; Moreau, F.; Yan, Y.; Yang, S. H.; Schröder, M. Structural and dynamic studies of substrate binding in porous metalorganic frameworks. Chem. Soc. Rev. 2017, 46, 239–274.
Motoyama, S.; Makiura, R.; Sakata, O.; Kitagawa, H. Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets. J. Am. Chem. Soc. 2011, 133, 5640–5643.
Cui, C. L.; Liu, Y. Y.; Xu, H. B.; Li, S. Z.; Zhang, W. N.; Cui, P.; Huo, F. W. Self-assembled metal-organic frameworks crystals for chemical vapor sensing. Small 2014, 10, 3672–3676.
Mazloom-Jalali, A.; Shariatinia, Z.; Tamai, I. A.; Pakzad, S. R.; Malakootikhah, J. Fabrication of chitosan-polyethylene glycol nanocomposite films containing ZIF-8 nanoparticles for application as wound dressing materials. Int. J. Biol. Macromol. 2020, 153, 421–432.
Duan, C.; Meng, J. R.; Wang, X. Q.; Meng, X.; Sun, X. L.; Xu, Y. J.; Zhao, W.; Ni, Y. H. Synthesis of novel cellulose-based antibacterial composites of Ag nanoparticles@metal-organic frameworks@carboxymethylated fibers. Carbohydr. Polym. 2018, 193, 82–88.
Liu, J. Y.; Sonshine, D. A.; Shervani, S.; Hurt, R. H. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 2010, 4, 6903–6913.
Liu, Z. G.; Wang, Y. L.; Zu, Y. G.; Fu, Y. J.; Li, N.; Guo, N.; Liu, R. S.; Zhang, Y. M. Synthesis of polyethylenimine (PEI) functionalized silver nanoparticles by a hydrothermal method and their antibacterial activity study. Mater. Sci. Eng. C 2014, 42, 31–37.
Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J. H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C. Y. et al. Antimicrobial effects of silver nanoparticles. Nanomed. :Nanotechnol. , Biol. Med. 2007, 3, 95–101.
Huang, Y.; Zhao, M. T.; Han, S. K.; Lai, Z. C.; Yang, J.; Tan, C. L.; Ma, Q. L.; Lu, Q. P.; Chen, J. Z.; Zhang, X. et al. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv. Mater. 2017, 29, 1700102.
Feng, G. N.; Huang, X. T.; Jiang, X. L.; Deng, T. W.; Li, Q. X.; Li, J. X.; Wu, Q. N.; Li, S. P.; Sun, X. Q.; Huang, Y. G. et al. The antibacterial effects of supermolecular nano-carriers by combination of silver and photodynamic therapy. Front. Chem. 2021, 9, 666408.
Gunawan, C.; Teoh, W. Y.; Marquis, C. P.; Amal, R. Cytotoxic origin of copper(II) oxide nanoparticles: Comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 2011, 5, 7214–7225.
Fang, F. C. Perspectives series: Host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J. Clin. Invest. 1997, 99, 2818–2825.
Wheatley, P. S.; Butler, A. R.; Crane, M. S.; Fox, S.; Xiao, B.; Rossi, A. G.; Megson, I. L.; Morris, R. E. NO-releasing zeolites and their antithrombotic properties. J. Am. Chem. Soc. 2006, 128, 502–509.
Fox, S.; Wilkinson, T. S.; Wheatley, P. S.; Xiao, B.; Morris, R. E.; Sutherland, A.; Simpson, A. J.; Barlow, P. G.; Butler, A. R.; Megson, I. L. et al. NO-loaded Zn2+-exchanged zeolite materials: A potential bifunctional anti-bacterial strategy. Acta Biomater. 2010, 6, 1515–1521.
Pinto, M. L.; Rocha, J.; Gomes, J. R. B.; Pires, J. Slow release of NO by microporous titanosilicate ETS-4. J. Am. Chem. Soc. 2011, 133, 6396–6402.
Cattaneo, D.; Warrender, S. J.; Duncan, M. J.; Kelsall, C. J.; Doherty, M. K.; Whitfield, P. D.; Megson, I. L.; Morris, R. E. Tuning the nitric oxide release from CPO-27 MOFs. RSC Adv. 2016, 6, 14059–14067.
Taylor-Edinbyrd, K.; Li, T. P.; Kumar, R. Effect of chemical structure of S-nitrosothiols on nitric oxide release mediated by the copper sites of a metal organic framework based environment. Phys. Chem. Chem. Phys. 2017, 19, 11947–11959.
Duncan, M. J.; Wheatley, P. S.; Coghill, E. M.; Vornholt, S. M.; Warrender, S. J.; Megson, I. L.; Morris, R. E. Antibacterial efficacy from NO-releasing MOF-polymer films. Mater. Adv. 2020, 1, 2509–2519.
Luan, X. K.; Wang, H. Z.; Xiang, Z. H.; Ma, Z. F.; Zhao, J. R.; Feng, Y.; Shi, Q.; Yin, J. H. Biomimicking dual-responsive extracellular matrix restoring extracellular balance through the Na/K-ATPase pathway. ACS Appl. Mater. Interfaces 2019, 11, 21258–21267.
Vatansever, F.; de Melo, W. C. M. A.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N. A.; Yin, R. et al. Antimicrobial strategies centered around reactive oxygen species-bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 2013, 37, 955–989.
Tao, Y.; Ju, E. G.; Ren, J. S.; Qu, X. G. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015, 27, 1097–1104.
Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.
Nath, I.; Chakraborty, J.; Verpoort, F. Metal organic frameworks mimicking natural enzymes: A structural and functional analogy. Chem. Soc. Rev. 2016, 45, 4127–4170.
Sun, H. J.; Gao, N.; Dong, K.; Ren, J. S.; Qu, X. G. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 2014, 8, 6202–6210.
Gao, L. Z.; Giglio, K. M.; Nelson, J. L.; Sondermann, H.; Travis, A. J. Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 2014, 6, 2588–2593.
Natalio, F.; André, R.; Hartog, A. F.; Stoll, B.; Jochum, K. P.; Wever, R.; Tremel, W. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 2012, 7, 530–535.
Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.
Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.
Zhang, J. Y.; Chen, Y. P.; Miller, K. P.; Ganewatta, M. S.; Bam, M.; Yan, Y.; Nagarkatti, M.; Decho, A. W.; Tang, C. B. Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria. J. Am. Chem. Soc. 2014, 136, 4873–4876.
Wang, D. D.; Jana, D.; Zhao, Y. L. Metal-organic framework derived nanozymes in biomedicine. Acc. Chem. Res. 2020, 53, 1389–1400.
Ali, A.; Ovais, M.; Zhou, H. G.; Rui, Y. K.; Chen, C. Y. Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials 2021, 275, 120951.
Hu, W. C.; Younis, M. R.; Zhou, Y.; Wang, C.; Xia, X. H. In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small 2020, 16, 2000553.
Zhang, P.; Sun, D. R.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J. W.; Kim, D. P.; Choi, W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 2019, 10, 940.
Wang, J. N.; Bao, M. Y.; Wei, T. X.; Wang, Z. Y.; Dai, Z. H. Bimetallic metal-organic framework for enzyme immobilization by biomimetic mineralization: Constructing a mimic enzyme and simultaneously immobilizing natural enzymes. Anal. Chim. Acta 2020, 1098, 148–154.
Xu, W. Q.; Jiao, L.; Yan, H. Y.; Wu, Y.; Chen, L. J.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Glucose oxidase-integrated metalorganic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl. Mater. Interfaces 2019, 11, 22096–22101.
Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem. , Int. Ed. 2019, 58, 4911–4916.
Zhong, X.; Xia, H.; Huang, W. Q.; Li, Z. X.; Jiang, Y. B. Biomimetic metal-organic frameworks mediated hybrid multienzyme mimic for tandem catalysis. Chem. Eng. J. 2020, 381, 122758.
Hu, D. F.; Li, H.; Wang, B. L.; Ye, Z.; Lei, W. X.; Jia, F.; Jin, Q.; Ren, K. F.; Ji, J. Surface-adaptive gold nanoparticles with effective adherence and enhanced photothermal ablation of methicillinresistant Staphylococcus aureus biofilm. ACS Nano 2017, 11, 9330–9339.
Teng, W. S. Y.; Zhang, Z. J.; Wang, Y. K.; Ye, Y. X.; Yinwang, E.; Liu, A.; Zhou, X. Z.; Xu, J. X.; Zhou, C. W.; Sun, H. X. et al. Iodine immobilized metal-organic framework for NIR-triggered antibacterial therapy on orthopedic implants. Small 2021, 17, 2102315.
Yang, Y. Q.; Huang, K.; Wang, M. Q.; Wang, Q. S.; Chang, H. S.; Liang, Y. K.; Wang, Q.; Zhao, J.; Tang, T. T.; Yang, S. B. Ubiquitination flow repressors: Enhancing wound healing of infectious diabetic ulcers through stabilization of polyubiquitinated hypoxia-inducible factor-1α by theranostic nitric oxide nanogenerators. Adv. Mater. 2021, 33, 2103593.
Yu, Y.; Tan, L.; Li, Z. Y.; Liu, X. M.; Zheng, Y. F.; Feng, X. B.; Liang, Y. Q.; Cui, Z. D.; Zhu, S. L.; Wu, S. L. Single-atom catalysis for efficient sonodynamic therapy of methicillin-resistant Staphylococcus aureus-infected osteomyelitis. ACS Nano 2021, 15, 10628–10639.
Chilakamarthi, U.; Giribabu, L. Photodynamic therapy: Past, present and future. Chem. Rec. 2017, 17, 775–802.
Lu, K. D.; He, C. B.; Lin, W. B. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 2014, 136, 16712–16715.
Ethirajan, M.; Chen, Y. H.; Joshi, P.; Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 2011, 40, 340–362.
Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.
Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.
Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D. et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281.
Castano, A. P.; Demidova, T. N.; Hamblin, M. R. Mechanisms in photodynamic therapy: Part one-photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther. 2004, 1, 279–293.
Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.
Tan, L.; Li, J.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; Yeung, K. W. K.; Pan, H. B.; Zheng, Y. F.; Wang, X. B.; Wu, S. L. In situ disinfection through photoinspired radical oxygen species storage and thermal-triggered release from black phosphorous with strengthened chemical stability. Small 2018, 14, 1703197.
Hong, L.; Liu, X. M.; Tan, L.; Cui, Z. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; Zheng, Y. F; Yeung, K. W. K. et al. Rapid biofilm elimination on bone implants using near-infrared-activated inorganic semiconductor heterostructures. Adv. Healthc. Mater. 2019, 8, 1900835.
Yang, X. Y.; Wang, D. Y.; Shi, Y. H.; Zou, J. H.; Zhao, Q. S.; Zhang, Q.; Huang, W.; Shao, J. J.; Xie, X. J.; Dong, X. C. Black phosphorus nanosheets immobilizing Ce6 for imaging-guided photothermal/photodynamic cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 12431–12440.
Yin, Z. H.; Chen, D. P.; Zou, J. H.; Shao, J. J.; Tang, H.; Xu, H.; Si, W. L.; Dong, X. C. Tumor microenvironment responsive oxygenself-generating nanoplatform for dual-imaging guided photodynamic and photothermal therapy. Chemistryselect 2018, 3, 4366–4373.
Li, L.; Chen, Y. S.; Chen, W. J.; Tan, Y.; Chen, H. Y.; Yin, J. Photodynamic therapy based on organic small molecular fluorescent dyes. Chin. Chem. Lett. 2019, 30, 1689–1703.
Dai, X. M.; Zhao, Y.; Yu, Y. J.; Chen, X. L.; Wei, X. S.; Zhang, X. G.; Li, C. X. Single continuous near-infrared laser-triggered photodynamic and photothermal ablation of antibiotic-resistant bacteria using effective targeted copper sulfide nanoclusters. ACS Appl. Mater. Interfaces 2017, 9, 30470–30479.
Liang, S.; Deng, X. R.; Chang, Y.; Sun, C. Q.; Shao, S.; Xie, Z. X.; Xiao, X.; Ma, P.; Zhang, H. Y.; Cheng, Z. Y. et al. Intelligent hollow Pt-CuS janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy. Nano Lett. 2019, 19, 4134–4145.
Huo, M. F.; Wang, L. Y.; Wang, Y. W.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 2019, 13, 2643–2653.
Yumita, N.; Nishigaki, R.; Umemura, K.; Umemura, S. I. Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Jpn. J. Cancer Res. 1989, 80, 219–222.
Wang, X. N.; Ip, M.; Leung, A. W.; Xu, C. S. Sonodynamic inactivation of methicillin-resistant Staphylococcus aureus in planktonic condition by curcumin under ultrasound sonication. Ultrasonics 2014, 54, 2109–2114.
Nakonechny, F.; Nisnevitch, M.; Nitzan, Y.; Nisnevitch, M. Sonodynamic excitation of rose bengal for eradication of grampositive and gram-negative bacteria. BioMed Res. Int. 2013, 2013, 684930.
Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.
Li, W. P.; Su, C. H.; Chang, Y. C.; Lin, Y. J.; Yeh, C. S. Ultrasoundinduced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS Nano 2016, 10, 2017–2027.