Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
β-Amyloid (Aβ) peptide fibrillation, one of the characteristic hallmarks of Alzheimer’s disease, is determined by many interfacial physical-chemical factors, e.g., charge, hydrophobicity, etc. Despite extensive research, chiral effect in different-scales on the fibrillation process of Aβ remains unclear. Herein, molecular-scale, sub-nanoscale, and nanoscale chiral-structures were constructed to investigate their chiral effect on the fibrillation of Aβ40 peptides. Chiral structures from molecular-scale to nanoscale were obtained from the different periods of the chemosynthesis process of chiral ZnS quantum-dots (QDs), confirmed by real-time monitoring of circular dichroism spectra. For molecular-scale, both L-penicillamine (L-P) and D-P ligands accelerated the fibrillation of Aβ40, and the speed-up effect of D-P was slightly stronger than L-P. For sub-nanoscale, both two chiral Zn-complexes (L-Zn and D-Zn) induced the agglomeration of Aβ40 without chirality discrimination. For nanoscale, both L-ZnS and D-ZnS QDs inhibited the fibrillation of Aβ40, and the inhibition effect of L-ZnS was notably better than that of D-ZnS. In-situ kinetics experiments of Aβ40 co-incubated with two chiral QDs demonstrated that L-ZnS completely prevents the misfolding of Aβ40 from unfolded to β-sheet, while D-ZnS cannot achieve this. Further site-replacement experiments and simulation results revealed the underlying molecular mechanisms of the different inhibition efficiency of chiral ZnS QDs on Aβ40 fibrillation, which mainly attribute to the stereoselectivity interaction between the chiral ligands of ZnS QDs and electro-positive amino acid residues (R5, K16, and K28) of Aβ40. This work offers a microscopic insight of chiral effect on Aβ fibrillation exerted by structures in different-scales, and provides a guidance in precise regulation of protein fibrillation via manipulating chiral structures in different-scales.
Soto, C.; Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosc. 2018, 21, 1332–1340.
Tao, Y. X.; Conn, P. M. Pharmacoperones as novel therapeutics for diverse protein conformational diseases. Physiol. Rev. 2018, 98, 697–725.
Chiti, F.; Dobson, C. M. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annu. Rev. Biochem. 2017, 86, 27–68.
Eisenberg, D.; Jucker, M. The amyloid state of proteins in human diseases. Cell 2012, 148, 1188–1203.
Michaels, T. C. T.; Šarić, A.; Curk, S.; Bernfur, K.; Arosio, P.; Meisl, G.; Dear, A. J.; Cohen, S. I. A.; Dobson, C. M.; Vendruscolo, M. et al. Dynamics of oligomer populations formed during the aggregation of Alzheimer's Aβ42 peptide. Nat. Chem. 2020, 12, 445–451.
Lee, S. J. C.; Nam, E.; Lee, H. J.; Savelieff, M. G.; Lim, M. H. Towards an understanding of amyloid-β oligomers: Characterization, toxicity mechanisms, and inhibitors. Chem. Soc. Rev. 2017, 46, 310–323.
Barbalinardo, M.; Antosova, A.; Gambucci, M.; Bednarikova, Z.; Albonetti, C.; Valle, F.; Sassi, P.; Latterini, L.; Gazova, Z.; Bystrenova, E. Effect of metallic nanoparticles on amyloid fibrils and their influence to neural cell toxicity. Nano Res. 2020, 13, 1081–1089.
Babu, E.; Bhuvaneswari, J.; Rajakumar, K.; Sathish, V.; Thanasekaran, P. Non-conventional photoactive transition metal complexes that mediated sensing and inhibition of amyloidogenic aggregates. Coord. Chem. Rev. 2021, 428, 213612.
Jakob-Roetne, R.; Jacobsen, H. Alzheimer's disease: From pathology to therapeutic approaches. Angew. Chem. , Int. Ed. 2009, 48, 3030–3059.
Hou, K.; Zhao, J.; Wang, H.; Li, B.; Li, K. X.; Shi, X. H.; Wan, K. W.; Ai, J.; Lv, J. W.; Wang, D. W. et al. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer's disease. Nat. Commun. 2020, 11, 4790.
Gao, G. B.; Zhang, M. X.; Gong, D. J.; Chen, R.; Hu, X. J.; Sun, T. L. The size-effect of gold nanoparticles and nanoclusters in the inhibition of amyloid-β fibrillation. Nanoscale 2017, 9, 4107–4113.
Cabaleiro-Lago, C.; Quinlan-Pluck, H.; Lynch, I.; Lindman, S.; Minogue, A. M.; Thulin, E.; Walsh, D. M.; Dawson, K. A.; Linse, S. Inhibition of amyloid β protein fibrillation by polymeric nanoparticles. J. Am. Chem. Soc. 2008, 130, 15437–15443.
Liao, Y. H.; Chang, Y. J.; Yoshiike, Y.; Chang, Y. C.; Chen, Y. R. Negatively charged gold nanoparticles inhibit Alzheimer's amyloid‐β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 2012, 8, 3631–3639.
Zhang, W. K.; Gao, G. B.; Ma, Z. J.; Luo, Z. Y.; He, M.; Sun, T. L. Au23(CR)14 nanocluster restores fibril Aβ’s unfolded state with abolished cytotoxicity and dissolves endogenous Aβ plaques. Natl. Sci. Rev. 2020, 7, 763–774.
Li, J. H.; Gao, G. B.; Tang, X. T.; Yu, M.; He, M.; Sun, T. L. Isomeric effect of nano-inhibitors on Aβ40 fibrillation at the nano-bio interface. ACS Appl. Mater. Interfaces 2021, 13, 4894–4904.
Zhao, X. L.; Zang, S. Q.; Chen, X. Y. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem. Soc. Rev. 2020, 49, 2481–2503.
Du, Z.; Guan, Y. J.; Ding, C.; Gao, N.; Ren, J. S.; Qu, X. G. Cross-fibrillation of insulin and amyloid β on chiral surfaces: Chirality affects aggregation kinetics and cytotoxicity. Nano Res. 2018, 11, 4102–4110.
Qing, G. Y.; Zhao, S. L.; Xiong, Y. T.; Lv, Z. Y.; Jiang, F. L.; Liu, Y.; Chen, H.; Zhang, M. X.; Sun, T. L. Chiral effect at protein/graphene interface: A bioinspired perspective to understand amyloid formation. J. Am. Chem. Soc. 2014, 136, 10736–10742.
Wang, J. Q.; Guan, Z. J.; Liu, W. D.; Yang, Y.; Wang, Q. M. Chiroptical activity enhancement via structural control: The chiral synthesis and reversible interconversion of two intrinsically chiral gold nanoclusters. J. Am. Chem. Soc. 2019, 141, 2384–2390.
Ma, Z. J.; Gao, G. B.; Luo, Z. Y.; Tang, X. T.; Sun, T. L. Tuning chirality transfer and amplification of supraparticles via solvent inducing self-aggregation of chiral gold nanoclusters. J. Phys. Chem. C 2019, 123, 24973–24978.
Zheng, G. C.; He, J. J.; Kumar, V.; Wang, S. L.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M.; Wong, K. Y. Discrete metal nanoparticles with plasmonic chirality. Chem. Soc. Rev. 2021, 50, 3738–3754.
Moshe, A. B.; Szwarcman, D.; Markovich, G. Size dependence of chiroptical activity in colloidal quantum dots. ACS Nano 2011, 5, 9034–9043.
Choi, J. K.; Haynie, B. E.; Tohgha, U.; Pap, L.; Elliott, K. W.; Leonard, B. M.; Dzyuba, S. V.; Varga, K.; Kubelka, J.; Balaz, M. Chirality inversion of CdSe and CdS quantum dots without changing the stereochemistry of the capping ligand. ACS Nano 2016, 10, 3809–3815.
Yang, F. F.; Gao, G. B.; Wang, J. C.; Chen, R.; Zhu, W. B.; Wang, L.; Ma, Z. J.; Luo, Z. Y.; Sun, T. L. Chiral β-hgs quantum dots: Aqueous synthesis, optical properties and cytocompatibility. J. Colloid Interface Sci. 2019, 537, 422–430.
Liu, J. Y.; Zhao, Y.; Zhao, C. L.; Dou, X. Q.; Ma, X. Y.; Guan, S. K.; Jia, Y.; Feng, C. L. Hydrogen-bonding regulated supramolecular chirality with controllable biostability. Nano Res. 2022, 15, 2226–2234.
Xu, L. G.; Wang, X. X.; Wang, W. W.; Sun, M. Z.; Choi, W. J.; Kim, J. Y.; Hao, C. L.; Li, S.; Qu, A. H.; Lu, M. R. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 2022, 601, 366–373.
Cao, Z. L.; Gao, H.; Qiu, M.; Jin, W.; Deng, S. Z.; Wong, K. Y.; Lei, D. Y. Chirality transfer from sub-nanometer biochemical molecules to sub-micrometer plasmonic metastructures: Physiochemical mechanisms, biosensing, and bioimaging opportunities. Adv. Mater. 2020, 32, 1907151.
Wu, L. Q.; Xu, Y.; Hou, T.; Jia, J. G.; Huang, X. D.; Weng, G. G.; Bao, S. S.; Zheng, L. M. Controllable macroscopic chirality of coordination polymers through pH and anion-mediated weak interactions. Chem. -Eur. J. 2021, 27, 16722–16734.
Moloney, M. P.; Gun'ko, Y. K.; Kelly, J. M. Chiral highly luminescent CdS quantum dots. Chem. Commun. 2007, 38, 3900–3902.
Spangler, L. C.; Cline, J. P.; Kiely, C. J.; McIntosh, S. Low temperature aqueous synthesis of size-controlled nanocrystals through size focusing: A quantum dot biomineralization case study. Nanoscale 2018, 10, 20785–20795.
Rabbani, G.; Ahmad, E.; Zaidi, N.; Fatima, S.; Khan, R. H. pH-induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochem. Biophys. 2012, 62, 487–499.
Vivekanandan, S.; Brender, J. R.; Lee, S. Y.; Ramamoorthy, A. A partially folded structure of amyloid-beta(1–40) in an aqueous environment. Biochem. Biophys. Res. Commun. 2011, 411, 312–316.
Kuznetsova, V. A.; Mates-Torres, E.; Prochukhan, N.; Marcastel, M.; Purcell-Milton, F.; O'Brien, J.; Visheratina, A. K.; Martinez-Carmona, M.; Gromova, Y.; Garcia-Melchor, M. et al. Effect of chiral ligand concentration and binding mode on chiroptical activity of CdSe/CdS quantum dots. ACS Nano 2019, 13, 13560–13572.
Khan, M. V.; Rabbani, G.; Ahmad, E.; Khan, R. H. Fluoroalcohols-induced modulation and amyloid formation in conalbumin. Int. J. Biol. Macromol. 2014, 70, 606–614.
Zeng, Z. W.; Xu, J. Y.; Zheng, W. H. Artemisinin protects PC12 cells against β-amyloid-induced apoptosis through activation of the ERK1/2 signaling pathway. Redox Biol. 2017, 12, 625–633.
Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.
Lee, C.; Yang, W. T.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.
Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627.
Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211.
Stevens, W. J.; Krauss, M.; Basch, H.; Jasien, P. G. Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Can. J. Chem. 1992, 70, 612–630.
Binkley, J. S.; Pople, J. A.; Hehre, W. J. Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 1980, 102, 939–947.
Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 1982, 104, 2797–2803.
Tohgha, U.; Deol, K. K.; Porter, A. G.; Bartko, S. G.; Choi, J. K.; Leonard, B. M.; Varga, K.; Kubelka, J.; Muller, G.; Balaz, M. Ligand induced circular dichroism and circularly polarized luminescence in cdse quantum dots. ACS Nano 2013, 7, 11094–11102.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154140.