AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flash memory based on MoTe2/boron nitride/graphene semi-floating gate heterostructure with non-volatile and dynamically tunable polarity

Shijie Wang1,2Guangyu Geng1,2Yang Sun1,2Sen Wu1,2Xiaodong Hu1,2Enxiu Wu1,2( )Jing Liu1,2( )
School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin 300072, China
Show Author Information

Graphical Abstract

We report a bi-polar memory based on MoTe2/h-BN/graphene semi-floating gate heterostructure, which has non-volatile and dynamically tunable polarity.

Abstract

Atomically thin two-dimensional (2D) materials are promising candidates to develop flash memories with premium performances as compared to conventional bulk materials, because of their ultra-thin thickness and highly tunable electrical properties. So far, most of the reported 2D material based flash memories work in the uni-polar mode, which usually further integrate additional local gate to achieve bi-polar function. However, such approach is volatile, meaning that the gate bias has to be applied persistently to maintain the polarity change and thus increases the power consumption. Here, we report a bi-polar memory based on MoTe2/h-BN/graphene semi-floating gate (SFG) heterostructure, which has non-volatile and dynamically tunable polarity. The SFG configuration has the channel layer of MoTe2 and dielectric layer of h-BN half-stacked on the floating gate layer of graphene. The off-graphene half of the MoTe2 channel can be tuned between n-type and p-type by simultaneously applying ultraviolet (UV) illumination and electrical field through the back gate, which maintains this polarity after the removal of both stimuli. As a result, the SFG memory can work in the non-volatile bi-polar mode, with a on/off ratio of ~ 100 and switching speed of 1 ms. On the other hand, the on-graphene half of the MoTe2 channel remains n-type under UV illumination and electrical bias, so that the MoTe2 full floating gate memory maintains n-type, which implements the integration of both n- and p-type memories in a single 2D heterostructure. This capability provides great flexibility for memory devices adapting in various emerging applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4305_MOESM1_ESM.pdf (800.9 KB)

References

1

Kim, K. R.; You, J. H.; Kwack, K. D.; Kim, T. W. Multibit polycristalline silicon-oxide-silicon nitride-oxide-silicon memory cells with high density designed utilizing a separated control gate. Jpn. J. Appl. Phys. 2010, 49, 104203.

2

Wong, H. S. P.; Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 2015, 10, 191–194.

3

Rao, F.; Ding, K. Y.; Zhou, Y. X.; Zheng, Y. H.; Xia, M. J.; Lv, S. L.; Song, Z. T.; Feng, S. L.; Ronneberger, I.; Mazzarello, R. et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science 2017, 358, 1423–1427.

4

Bez, R.; Camerlenghi, E.; Modelli, A.; Visconti, A. Introduction to flash memory. Proc. IEEE 2003, 91, 489–502.

5

Wang, J. L.; Zou, X. M.; Xiao, X. H.; Xu, L.; Wang, C. L.; Jiang, C. Z.; Ho, J. C.; Wang, T.; Li, J. C.; Liao, L. Floating gate memory-based monolayer MoS2 transistor with metal nanocrystals embedded in the gate dielectrics. Small 2015, 11, 208–213.

6

Qiu, D. R.; Lee, D. U.; Lee, K. S.; Pak, S. W.; Kim, E. K. Toward negligible charge loss in charge injection memories based on vertically integrated 2D heterostructures. Nano Res. 2016, 9, 2319–2326.

7

Wu, X. H.; Ge, R. J.; Chen, P. A.; Chou, H.; Zhang, Z. P.; Zhang, Y. F.; Banerjee, S.; Chiang, M. H.; Lee, J. C.; Akinwande, D. Thinnest nonvolatile memory based on monolayer h-BN. Adv. Mater. 2019, 31, 1806790.

8

Han, S. T.; Zhou, Y.; Roy, V. A. L. Towards the development of flexible non-volatile memories. Adv. Mater. 2013, 25, 5425–5449.

9

Lee, J. S. Progress in non-volatile memory devices based on nanostructured materials and nanofabrication. J. Mater. Chem. 2011, 21, 14097–14112.

10

Ge, R. J.; Wu, X. H.; Kim, M.; Shi, J. P.; Sonde, S.; Tao, L.; Zhang, Y. F.; Lee, J. C.; Akinwande, D. Atomristor: Nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 2018, 18, 434–441.

11

Wu, E. X.; Xie, Y.; Wang, S. J.; Zhang, D. H.; Hu, X. D.; Liu, J. Multi-level flash memory device based on stacked anisotropic ReS2-boron nitride-graphene heterostructures. Nanoscale 2020, 12, 18800–18806.

12

Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013, 7, 3246–3252.

13

Lu, Y. Y.; Peng, Y. T.; Huang, Y. T.; Chen, J. N.; Jhou, J.; Lan, L. W.; Jian, S. H.; Kuo, C. C.; Hsieh, S. H.; Chen, C. H. et al. Engineering an indium selenide van der Waals interface for multilevel charge storage. ACS Appl. Mater. Interfaces 2021, 13, 4618–4625.

14

Liu, C. S.; Yan, X.; Wang, J. L.; Ding, S. J.; Zhou, P.; Zhang, D. W. Eliminating overerase behavior by designing energy band in high-speed charge-trap memory based on WSe2. Small 2017, 13, 1604128.

15

Chen, M. K.; Wang, Y. F.; Shepherd, N.; Huard, C.; Zhou, J. T.; Guo, L. J.; Lu, W.; Liang, X. G. Abnormal multiple charge memory states in exfoliated few-layer WSe2 transistors. ACS Nano 2017, 11, 1091–1102.

16

Liu, H. N.; Cui, M. H.; Dang, C. H.; Wen, W.; Wang, X. S.; Xie, L. M. Two-dimensional WSe2/organic acceptor hybrid nonvolatile memory devices based on interface charge trapping. ACS Appl. Mater. Interfaces 2019, 11, 34424–34429.

17

Zhu, C. G.; Sun, X. X.; Liu, H. W.; Zheng, B. Y.; Wang, X. W.; Liu, Y.; Zubair, M.; Wang, X.; Zhu, X. L.; Li, D. et al. Nonvolatile MoTe2 p-n diodes for optoelectronic logics. ACS Nano 2019, 13, 7216–7222.

18

Wu, E. X.; Xie, Y.; Wang, S. J.; Wu, C.; Zhang, D. H.; Hu, X. D.; Liu, J. Tunable and nonvolatile multibit data storage memory based on MoTe2/boron nitride/graphene heterostructures through contact engineering. Nanotechnology 2020, 31, 485205.

19

Tian, H.; Deng, B. C.; Chin, M. L.; Yan, X. D.; Jiang, H.; Han, S. J.; Sun, V.; Xia, Q. F.; Dubey, M.; Xia, F. N. et al. A dynamically reconfigurable ambipolar black phosphorus memory device. ACS Nano 2016, 10, 10428–10435.

20

Nakaharai, S.; Yamamoto, M.; Ueno, K.; Lin, Y. F.; Li, S. L.; Tsukagoshi, K. Electrostatically reversible polarity of Ambipolar α-MoTe2 transistors. ACS Nano 2015, 9, 5976–5983.

21

Larentis, S.; Fallahazad, B.; Movva, H. C. P.; Kim, K.; Rai, A.; Taniguchi, T.; Watanabe, K.; Banerjee, S. K.; Tutuc, E. Reconfigurable complementary monolayer MoTe2 field-effect transistors for integrated circuits. ACS Nano 2017, 11, 4832–4839.

22

Kang, J.; Tongay, S.; Zhou, J.; Li, J. B.; Wu, J. Q. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111.

23

He, C. L.; Tang, J.; Shang, D. S.; Tang, J. S.; Xi, Y.; Wang, S. P.; Li, N.; Zhang, Q. T.; Lu, J. K.; Wei, Z. et al. Artificial synapse based on van der Waals heterostructures with tunable synaptic functions for neuromorphic computing. ACS Appl. Mater. Interfaces 2020, 12, 11945–11954.

24

Tian, H.; Cao, X.; Xie, Y. J.; Yan, X. D.; Kostelec, A.; DiMarzio, D.; Chang, C.; Zhao, L. D.; Wu, W.; Tice, J. et al. Emulating bilingual synaptic response using a junction-based artificial synaptic device. ACS Nano 2017, 11, 7156–7163.

25

Borghetti, J.; Snider, G. S.; Kuekes, P. J.; Yang, J. J.; Stewart, D. R.; Williams, R. S. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 2010, 464, 873–876.

26

Lin, Y. F.; Xu, Y.; Wang, S. T.; Li, S. L.; Yamamoto, M.; Aparecido-Ferreira, A.; Li, W. W.; Sun, H. B.; Nakaharai, S.; Jian, W. B. et al. Ambipolar MoTe2 transistors and their applications in logic circuits. Adv. Mater. 2014, 26, 3263–3269.

27

Wang, S. P.; He, C. L.; Tang, J.; Lu, X. B.; Shen, C.; Yu, H.; Du, L. J.; Li, J. F.; Yang, R.; Shi, D. X. et al. New floating gate memory with excellent retention characteristics. Adv. Electron. Mater. 2019, 5, 1800726.

28

Feng, Q.; Yan, F. G.; Luo, W. G.; Wang, K. Y. Charge trap memory based on few-layer black phosphorus. Nanoscale 2016, 8, 2686–2692.

29

Li, D.; Chen, M. Y.; Zong, Q. J.; Zhang, Z. X. Floating-gate manipulated graphene-black phosphorus heterojunction for nonvolatile ambipolar schottky junction memories, memory inverter circuits, and logic rectifiers. Nano Lett. 2017, 17, 6353–6359.

30

Li, D.; Chen, M.; Sun, Z.; Yu, P.; Liu, Z.; Ajayan, P. M.; Zhang, Z. Two-dimensional non-volatile programmable p-n junctions. Nat. Nanotechnol. 2017, 12, 901–906.

31

Wu, E. X.; Xie, Y.; Zhang, J.; Zhang, H.; Hu, X. D.; Liu, J.; Zhou, C. W.; Zhang, D. H. Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation. Sci. Adv. 2019, 5, eaav3430.

32

Ju, L.; Velasco, J. Jr.; Huang, E.; Kahn, S.; Nosiglia, C.; Tsai, H. Z.; Yang, W.; Taniguchi, T.; Watanabe, K.; Zhang, Y. et al. Photoinduced doping in heterostructures of graphene and boron nitride. Nat. Nanotechnol. 2014, 9, 348–352.

33

Zhang, J.; Ma, X. L.; Song, X. M.; Hu, X. D.; Wu, E. X.; Liu, J. UV light modulated synaptic behavior of MoTe2/BN heterostructure. Nanotechnology 2021, 32, 475207.

34

Wang, H. W.; Chen, M. L.; Zhu, M. J.; Wang, Y. N.; Dong, B. J.; Sun, X. D.; Zhang, X. R.; Cao, S. Q. et al. Gate tunable giant anisotropic resistance in ultra-thin GaTe. Nat. Commun. 2019, 10, 2302.

Nano Research
Pages 6507-6514
Cite this article:
Wang S, Geng G, Sun Y, et al. Flash memory based on MoTe2/boron nitride/graphene semi-floating gate heterostructure with non-volatile and dynamically tunable polarity. Nano Research, 2022, 15(7): 6507-6514. https://doi.org/10.1007/s12274-022-4305-7
Topics:

1004

Views

9

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 08 December 2021
Revised: 08 March 2022
Accepted: 08 March 2022
Published: 25 April 2022
© Tsinghua University Press 2022
Return