AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Epitaxial growth of large area ZrS2 2D semiconductor films on sapphire for optoelectronics

Yan Tian1,2Yong Cheng1,2Jidong Huang1,2Siyu Zhang1,2Hao Dong1,2Gaokai Wang1,2Jingren Chen1,2Jinliang Wu1,2Zhigang Yin1,2( )Xingwang Zhang1,2 ( )
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

The high quality large-area uniform ZrS2 films are epitaxially grown on c-plane sapphire by chemical vapor deposition due to the supercell matching. The epitaxial ZrS2 film exhibits n-type semiconductor behavior with a room temperature mobility of 2.4 cm2·V−1·s−1, mainly limited by optical phonon scattering. The ZrS2 photodetectors exhibit excellent performance with a light on/off ratio of 106 and a specific detectivity of 2.6 × 1012 Jones.

Abstract

Recently, group-IVB semiconducting transition metal dichalcogenides (TMDs) of ZrS2 have attracted significant research interest due to its layered nature, moderate band gap, and extraordinary physical properties. Most device applications require a deposition of high quality large-area uniform ZrS2 single crystalline films, which has not yet been achieved. In this work, for the first time, we demonstrate the epitaxial growth of high quality large-area uniform ZrS2 films on c-plane sapphire substrates by chemical vapor deposition. An atomically sharp interface is observed due to the supercell matching between ZrS2 and sapphire, and their epitaxial relationship is found to be ZrS2 (0001)[ 101¯0]||Al2O3 (0001)[ 112¯0]. The epitaxial ZrS2 film exhibits n-type semiconductor behavior with a room temperature mobility of 2.4 cm2·V−1·s−1, and the optical phonon is the dominant scattering mechanism at room temperature or above. Furthermore, the optoelectronic applications of ZrS2 films are demonstrated by fabricating photodetector devices. The ZrS2 photodetectors exhibit the excellent comprehensive performance, such as a light on/off ratio of 106 and a specific detectivity of 2.6 × 1012 Jones, which are the highest values compared with the photodetectors based on other group-IVB two-dimensional TMDs.

Electronic Supplementary Material

Download File(s)
12274_2022_4308_MOESM1_ESM.pdf (3.1 MB)

References

1

Li, H. N.; Li, Y.; Aljarb, A.; Shi, Y. M.; Li, L. J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem. Rev. 2018, 118, 6134–6150.

2

Zhou, J. D.; Lin, J. J.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

3

Shivayogimath, A.; Thomsen, J. D.; Mackenzie, D. M. A.; Geisler, M.; Stan, R. M.; Holt, A. J.; Bianchi, M.; Crovetto, A.; Whelan, P. R.; Carvalho, A. et al. A universal approach for the synthesis of two-dimensional binary compounds. Nat. Commun. 2019, 10, 2957.

4

Wu, M.; Xiao, Y. H.; Zeng, Y.; Zhou, Y. L.; Zeng, X. B.; Zhang, L. N.; Liao, W. G. Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat 2021, 3, 362–396.

5

Hoang, A. T.; Qu, K. R.; Chen, X.; Ahn, J. H. Large-area synthesis of transition metal dichalcogenides via CVD and solution-based approaches and their device applications. Nanoscale 2021, 13, 615–633.

6

Yan, C. Y.; Gong, C. H.; Wangyang, P.; Chu, J. W.; Hu, K.; Li, C. B.; Wang, X. P.; Du, X. C.; Zhai, T. Y.; Li, Y. R. et al. 2D group IVB transition metal dichalcogenides. Adv. Funct. Mater. 2018, 28, 1803305.

7

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

8

Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

9

Guo, H. Y.; Lu, N.; Wang, L.; Wu, X. J.; Zeng, X. C. Tuning electronic and magnetic properties of early transition-metal dichalcogenides via tensile strain. J. Phys. Chem. C 2014, 118, 7242–7249.

10

Lv, H. Y.; Lu, W. J.; Shao, D. F.; Lu, H. Y.; Sun, Y. P. Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer. J. Mater. Chem. C 2016, 4, 4538–4545.

11

Shimazu, Y.; Fujisawa, Y.; Arai, K.; Iwabuchi, T.; Suzuki, K. Synthesis and characterization of zirconium disulfide single crystals and thin-film transistors based on multilayer zirconium disulfide flakes. ChemNanoMat 2018, 4, 1078–1082.

12

Li, L.; Fang, X. S.; Zhai, T. Y.; Liao, M. Y.; Gautam, U. K; Wu, X. C.; Koide, Y. S.; Bando, Y.; Golberg, D. Electrical transport and high-performance photoconductivity in individual ZrS2 nanobelts. Adv. Mater. 2010, 22, 4151–4156.

13

Jang, J. T.; Jeong, S.; Seo, J. W.; Kim, M. C.; Sim, E.; Oh, Y.; Nam, S.; Park, B.; Cheon, J. Ultrathin zirconium disulfide nanodiscs. J. Am. Chem. Soc. 2011, 133, 7636–7639.

14

Hamada, M.; Matsuura, K.; Hamada, T.; Muneta, I.; Kakushima, K.; Tsutsui, K.; Wakabayashi, H. ZrS2 symmetrical-ambipolar FETs with near-midgap TiN film for both top-gate electrode and Schottky-barrier contact. Jpn. J. Appl. Phys. 2021, 60, SBBH05.

15

Zhang, M.; Zhu, Y. M.; Wang, X. S.; Feng, Q. L.; Qiao, S. L.; Wen, W.; Chen, Y. F.; Cui, M. H.; Zhang, J.; Cai, C. Z. et al. Controlled synthesis of ZrS2 monolayer and few layers on hexagonal boron nitride. J. Am. Chem. Soc. 2015, 137, 7051–7054.

16

Wang, X. T.; Huang, L.; Jiang, X. W.; Li, Y.; Wei, Z. M.; Li, J. B. Large scale ZrS2 atomically thin layers. J. Mater. Chem. C 2016, 4, 3143–3148.

17

Zhu, Y. M.; Wang, X. S.; Zhang, M.; Cai, C. Z.; Xie, L. M. Thickness and temperature dependent electrical properties of ZrS2 thin films directly grown on hexagonal boron nitride. Nano Res. 2016, 9, 2931–2937.

18

Mattinen, M.; Popov, G.; Vehkamäki, M.; King, P. J.; Mizohata, K.; Jalkanen, P.; Räisänen, J.; Leskelä, M.; Ritala, M. Atomic layer deposition of emerging 2D semiconductors, HfS2 and ZrS2, for optoelectronics. Chem. Mater. 2019, 31, 5713–5724.

19

Mattinen, M.; King, P. J.; Popov, G.; Hämäläinen, J.; Heikkilä, M. J.; Leskelä, M.; Ritala, M. Van der Waals epitaxy of continuous thin films of 2D materials using atomic layer deposition in low temperature and low vacuum conditions. 2D Mater. 2020, 7, 011003.

20

Dang, V. Q.; Al-Ali, K. The synthesis and investigation of the reversible conversion of layered ZrS2 and ZrS3. New J. Chem. 2020, 44, 7583–7590.

21

Huang, Z. S.; Zhang, W. X.; Zhang, W. L. Computational search for two-dimensional MX2 semiconductors with possible high electron mobility at room temperature. Materials 2016, 9, 716.

22

Whitehouse, C. R.; Rimmington, H. P. R.; Balchin, A. A. Growth conditions and crystal structure parameters of layer compounds in the series ZrSxSe2−x. Phys. Status Solidi A 1973, 18, 623–631.

23

Roubi, L.; Carlone, C. Resonance Raman spectrum of HfS2 and ZrS2. Phys. Rev. B 1988, 37, 6808–6812.

24

Mañas-Valero, S.; García-López, V.; Cantarero, A.; Galbiati, M. Raman spectra of ZrS2 and ZrSe2 from bulk to atomically thin layers. Appl. Sci. 2016, 6, 264.

25

Moustafa, M.; Zandt, T.; Janowitz, C.; Manzke, R. Growth and band gap determination of the ZrSxSe2−x single crystal series. Phys. Rev. B 2009, 80, 035206.

26

Jiang, H. Structural and electronic properties of ZrX2 and HfX2 (X = S and Se) from first principles calculations. J. Chem. Phys. 2011, 134, 204705.

27

Greenaway, D. L.; Nitsche, R. Preparation and optical properties of group IV-VI2 chalcogenides having the CdI2 structure. J. Phys. Chem. Solids 1965, 26, 1445–1458.

28

Abdulsalam, M.; Joubert, D. P. Optical spectrum and excitons in bulk and monolayer MX2 (M = Zr, Hf; X = S, Se). Phys. Status Solidi B 2016, 253, 705–711.

29

Ahmad, S.; D’Souza, R.; Mukherjee, S. Band gap modulation of ZrX2 (X = S, Se, Te) mono-layers under biaxial strain and transverse electric field and its lattice dynamic properties: A first principles study. Mater. Res. Express 2019, 6, 036308.

30

Wang, D. G.; Zhang, X. W.; Liu, H.; Meng, J. H.; Xia, J.; Yin, Z. G.; Wang, Y.; You, J. B.; Meng, X. M. Epitaxial growth of HfS2 on sapphire by chemical vapor deposition and application for photodetectors. 2D Mater. 2017, 4, 031012.

31

Wang, D. G.; Zhang, X. W.; Guo, G. C.; Gao, S. H.; Li, X. X.; Meng, J. H.; Yin, Z. G.; Liu, H.; Gao, M. L.; Cheng, L. K. et al. Large-area synthesis of layered HfS2(1−x)Se2x alloys with fully tunable chemical compositions and bandgaps. Adv. Mater. 2018, 30, 1803285.

32

Tian, Y.; Zheng, M. Y.; Cheng, Y.; Yin, Z. G.; Jiang, J.; Wang, G. K.; Chen, J. R.; Li, X. X.; Qi, J.; Zhang, X. W. Epitaxial growth of ZrSe2 nanosheets on sapphire via chemical vapor deposition for optoelectronic application. J. Mater. Chem. C 2021, 9, 13954–13962.

33

Petritz, R. L.; Scanlon, W. W. Mobility of electrons and holes in the polar crystal, PbS. Phys. Rev. 1955, 97, 1620–1626.

34

Oliver, S. M.; Fox, J. J.; Hashemi, A.; Singh, A.; Cavalero, R. L.; Yee, S.; Snyder, D. W.; Jaramillo, R.; Komsa, H. P.; Vora, P. M. Phonons and excitons in ZrSe2-ZrS2 alloys. J. Mater. Chem. C 2020, 8, 5732–5743.

35

Ao, L.; Pham, A.; Xiao, H. Y.; Zu, X. T.; Li, S. Engineering the electronic and magnetic properties of d0 2D dichalcogenide materials through vacancy doping and lattice strains. Phys. Chem. Chem. Phys. 2016, 18, 7163–7168.

36

Yan, C. Y.; Gan, L.; Zhou, X.; Guo, J.; Huang, W. J.; Huang, J. W.; Jin, B.; Xiong, J.; Zhai, T. Y.; Li, Y. R. Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater. 2017, 27, 1702918.

37

Talib, M.; Tripathi, N.; Sharma, P.; Hasan, P. M. Z.; Melaibari, A. A.; Darwesh, R.; Arsenin, A. V.; Volkov, V. S.; Yakubovsky, D. I.; Kumar, S. et al. Development of ultra-sensitive broadband photodetector: A detailed study on hidden photodetection-properties of TiS2 nanosheets. J. Mater. Res. Technol. 2021, 14, 1243–1254.

38

Walmsley, T. S.; Xu, Y. Q. Enhanced photocurrent response speed in charge-density-wave phase of TiSe2-metal junctions. Nanoscale 2021, 13, 11836–11843.

39

Wang, D. G.; Meng, J. H.; Zhang, X. W.; Guo, G. C.; Yin, Z. G.; Liu, H.; Cheng, L. K.; Gao, M. L.; You, J. B.; Wang, R. Z. Selective direct growth of atomic layered HfS2 on hexagonal boron nitride for high performance photodetectors. Chem. Mater. 2018, 30, 3819–3826.

40

Zheng, B. J.; Chen, Y. F.; Wang, Z. G.; Qi, F.; Huang, Z. S.; Hao, X.; Li, P. J.; Zhang, W. L.; Li, Y. R. Vertically oriented few-layered HfS2 nanosheets: Growth mechanism and optical properties. 2D Mater. 2016, 3, 035024.

41

Yin, L.; Xu, K.; Wen, Y.; Wang, Z. X.; Huang, Y.; Wang, F.; Shifa, T. A.; Cheng, R. Q.; Ma, H.; He, J. Ultrafast and ultrasensitive phototransistors based on few-layered HfSe2. Appl. Phys. Lett. 2016, 109, 213105.

42

Guo, F. W.; Yang, B.; Yuan, Y. B.; Xiao, Z. G.; Dong, Q. F.; Bi, Y.; Huang, J. S. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 2012, 7, 798–802.

43

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

44

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

Nano Research
Pages 6628-6635
Cite this article:
Tian Y, Cheng Y, Huang J, et al. Epitaxial growth of large area ZrS2 2D semiconductor films on sapphire for optoelectronics. Nano Research, 2022, 15(7): 6628-6635. https://doi.org/10.1007/s12274-022-4308-4
Topics:

901

Views

20

Crossref

22

Web of Science

20

Scopus

2

CSCD

Altmetrics

Received: 01 January 2022
Revised: 09 March 2022
Accepted: 09 March 2022
Published: 23 April 2022
© Tsinghua University Press 2022
Return