Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
To improve the scanning speed of an atomic force microscopy (AFM), a smooth scanning pattern is elaborately devised via trajectory shaping in this paper, so as to achieve fast imaging without hardware modification. Specifically, in the proposed scanning method, the piezoelectric actuator tracks a well-designed smooth periodic signal in x-direction, and simultaneously tracks a step signal in y-direction. The advantage of the proposed method is that it does not require additional data reprocessing to construct the morphology of the sample surface, while significantly increasing the scanning bandwidth restricted by the raster scanning method. Particularly, to directly utilize the height data collected by scanning to produce the sample morphology, the forward process in the common raster scanning mode is retained in the proposed method, the tracking signal in the forward process is thus set to a ramp function in x-direction. In addition, to ensure the continuity and smoothness of the entire tracking signal in x-direction, a segment of a sine curve is uniquely determined as the backward tracking signal by position and acceleration constraints, so as to ensure that the forward and backward curves are continuous and acceleration-continuous at the intersection point. Moreover, the frequency spectrum analysis of the designed smooth signal is carried out to exhibit the depressed amplitudes of high-frequency components, which demonstrates that the proposed method is able to reduce the resonance in AFM high-speed scanning, so as to improve the capacity of rapidly generating high-quality images. Finally, convincing comparison experiments are implemented to verify the imaging performance of the designed scanning algorithm.
Li, M.; Xi, N.; Wang, Y. C.; Liu, L. Q. Advances in atomic force microscopy for single-cell analysis. Nano Res. 2019, 12, 703–718.
Li, M.; Liu, L. Q.; Zambelli, T. Fluidfm for single-cell biophysics. Nano Res. 2022, 15, 773–786.
Peric, O.; Hannebelle, M.; Adams, J. D.; Fantner, G. E. Microfluidic bacterial traps for simultaneous fluorescence and atomic force microscopy. Nano Res. 2017, 10, 3896–3908.
Liu, H. J.; Wen, J.; Xiao, Y.; Liu, J.; Hopyan, S.; Radisic, M.; Simmons, C. A.; Sun, Y. In situ mechanical characterization of the cell nucleus by atomic force microscopy. ACS Nano 2014, 8, 3821–3828.
Ren, J.; Zou, Q. Z. Adaptive-scanning, near-minimum-deformation atomic force microscope imaging of soft sample in liquid: Live mammalian cell example. Ultramicroscopy 2018, 186, 150–157.
Lim, K.; Kodera, N.; Wang, H. B.; Mohamed, M. S.; Hazawa, M.; Kobayashi, A.; Yoshida, T.; Hanayama, R.; Yano, S.; Ando, T. et al. High-speed AFM reveals molecular dynamics of human influenza a hemagglutinin and its interaction with exosomes. Nano Lett. 2020, 20, 6320–6328.
Luo, Y. F.; Andersson, S. B. Image reconstruction for sub-sampled atomic force microscopy images using deep neural networks. Micron 2020, 130, 102814.
Brown, B. P.; Picco, L.; Miles, M. J.; Faul, C. F. J. Opportunities in high-speed atomic force microscopy. Small 2013, 9, 3201–3211.
Li, T. W., Zou, Q. Z., Ma, T. X., Singer, J., Su, C. M. Adaptive simultaneous topography and broadband nanomechanical mapping of heterogeneous materials on atomic force microscope. IEEE Trans. Nanotechnol. 2020, 19, 689–698.
Rana, M. S.; Pota, H. R.; Petersen, I. R. A survey of methods used to control piezoelectric tube scanners in high-speed AFM imaging. Asian J. Control. 2018, 20, 1379–1399.
Wang, A.; Cheng, L.; Yang, C. G.; Hou, Z. G. An adaptive fuzzy predictive controller with hysteresis compensation for piezoelectric actuators. Cogn. Comput. 2020, 12, 736–747.
Rao, A.; Gnecco, E.; Marchetto, D.; Mougin, K.; Schönenberger, M.; Valeri, S.; Meyer, E. The analytical relations between particles and probe trajectories in atomic force microscope nanomanipulation. Nanotechnology 2009, 20, 115706.
Ziegler, D.; Meyer, T. R.; Amrein, A.; Bertozzi, A. L.; Ashby, P. D. Ideal scan path for high-speed atomic force microscopy. IEEE/ASME Trans. Mechatron. 2017, 22, 381–391.
Chang, P. I.; Huang, P.; Maeng, J.; Andersson, S. B. Local raster scanning for high-speed imaging of biopolymers in atomic force microscopy. Rev. Sci. Instrum. 2011, 82, 063703.
Ahmad, A.; Schuh, A.; Rangelow, I. W. Adaptive AFM scan speed control for high aspect ratio fast structure tracking. Rev. Sci. Instrum. 2014, 85, 103706.
Lu, H. J.; Wen, Y. B.; Zhang, H.; Xie, H.; Shen, Y. J. 360° multiparametric imaging atomic force microscopy: A method for three-dimensional nanomechanical mapping. Ultramicroscopy 2019, 196, 83–87.
Fan, Y. F.; Tan, U. X. Design of a feedforward-feedback controller for a piezoelectric-driven mechanism to achieve high-frequency nonperiodic motion tracking. IEEE/ASME Trans. Mechatron. 2019, 24, 853–862.
Tuma, T.; Lygeros, J.; Kartik, V.; Sebastian, A.; Pantazi, A. High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories. Nanotechnology 2012, 23, 185501.
Bazaei, A.; Yong, Y. K.; Moheimani, S. O. R. High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues. Rev. Sci. Instrum. 2012, 83, 063701.
Yong, Y. K.; Bazaei, A.; Moheimani, S. O. R. Video-rate Lissajous-scan atomic force microscopy. IEEE Trans. Nanotechnol. 2014, 13, 85–93.
Wu, J. W.; Lin, Y. T.; Lo, Y. T., Liu, W. C.; Fu, L. C. Lissajous hierarchical local scanning to increase the speed of atomic force microscopy. IEEE Trans. Nanotechnol. 2015, 14, 810–819.
Mahmood, I. A.; Moheimani, S. O. R. Fast spiral-scan atomic force microscopy. Nanotechnology 2009, 20, 365503.
Mahmood, I. A.; Moheimani, S. O. R.; Bhikkaji, B. A new scanning method for fast atomic force microscopy. IEEE Trans. Nanotechnol. 2009, 10, 203–216.
Bazaei, A.; Yong, Y. K.; Moheimani, S. O. R. Combining spiral scanning and internal model control for sequential AFM imaging at video rate. IEEE/ASME Trans. Mechatron. 2017, 22, 371–380.
Rana, M. S.; Pota, H. R.; Petersen, I. R. Spiral scanning with improved control for faster imaging of AFM. IEEE Trans. Nanotechnol. 2014, 13, 541–550.
Rana, M. S.; Pota, H. R.; Petersen, I. R. Performance of sinusoidal scanning with MPC in AFM imaging. IEEE/ASME Trans. Mechatron. 2015, 20, 73–83.
Bazaei, A.; Maroufi, M.; Fowler, A. G.; Moheimani, S. O. R. Internal model control for spiral trajectory tracking with MEMS AFM scanners. IEEE Trans. Control Syst. Technol. 2016, 24, 1717–1728.
Bazaei, A.; Maroufi, M.; Moheimani, S. O. R. Tracking control of constant-linear-velocity spiral reference by LQG method. IFAC-PapersOnLine 2017, 50, 15568–15573.
Yong, Y. K.; Moheimani, S. O. R.; Petersen, I. R. High-speed cycloid-scan atomic force microscopy. Nanotechnology 2010, 21, 365503.
Wang, K. X.; Ruppert, M. G.; Manzie, C.; Nešić, D.; Yong, Y. K. Adaptive scan for atomic force microscopy based on online optimization: Theory and experiment. IEEE Trans. Control Syst. Technol. 2020, 28, 869–883.
Nikooienejad, N.; Maroufi, M.; Moheimani, S. O. R. Iterative learning control for video-rate atomic force microscopy. IEEE/ASME Trans. Mechatron. 2021, 26, 2127–2138.
Nikooienejad, N.; Maroufi, M.; Moheimani, S. O. R. Rosette-scan video-rate atomic force microscopy: Trajectory patterning and control design. Rev. Sci. Instrum. 2019, 90, 073702.
Chen, C. L.; Wu, J. W.; Lin, Y. T.; Fu, L. C.; Chen, M. Y. Precision sinusoidal local scan for large-range atomic force microscopy with auxiliary optical microscopy. IEEE/ASME Trans. Mechatron. 2015, 20, 226–236.
Schitter, G.; Thurner, P. J.; Hansma, P. K. Design and input-shaping control of a novel scanner for high-speed atomic force microscopy. Mechatronics 2008, 18, 282–288.
Fleming, A. J.; Wills, A. G. Optimal periodic trajectories for band-limited systems. IEEE Trans. Control Syst. Technol. 2009, 17, 552–562.
Li, L. L.; Huang, J.; Aphale, S. S.; Zhu, L. M. A smoothed raster scanning trajectory based on acceleration-continuous B-spline transition for high-speed atomic force microscopy. IEEE/ASME Trans. Mechatron. 2021, 26, 24–32.
Zhang, K. Q.; Hatano, T.; Tien, T.; Herrmann, G.; Edwards, C.; Burgess, S. C.; Miles, M. An adaptive non-raster scanning method in atomic force microscopy for simple sample shapes. Meas. Sci. Technol. 2015, 26, 035401.