AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A fast scanning strategy based on trajectory shaping for atomic force microscopy

Yinan Wu1,2Yingao Chang1,2Yongchun Fang1,2( )Zhi Fan1,2
Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300350, China
Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
Show Author Information

Graphical Abstract

This paper designs a smooth scanning method via trajectory shaping for the atomic force microscopy, which improves the imaging quality in high-speed scanning without hardware modification.

Abstract

To improve the scanning speed of an atomic force microscopy (AFM), a smooth scanning pattern is elaborately devised via trajectory shaping in this paper, so as to achieve fast imaging without hardware modification. Specifically, in the proposed scanning method, the piezoelectric actuator tracks a well-designed smooth periodic signal in x-direction, and simultaneously tracks a step signal in y-direction. The advantage of the proposed method is that it does not require additional data reprocessing to construct the morphology of the sample surface, while significantly increasing the scanning bandwidth restricted by the raster scanning method. Particularly, to directly utilize the height data collected by scanning to produce the sample morphology, the forward process in the common raster scanning mode is retained in the proposed method, the tracking signal in the forward process is thus set to a ramp function in x-direction. In addition, to ensure the continuity and smoothness of the entire tracking signal in x-direction, a segment of a sine curve is uniquely determined as the backward tracking signal by position and acceleration constraints, so as to ensure that the forward and backward curves are continuous and acceleration-continuous at the intersection point. Moreover, the frequency spectrum analysis of the designed smooth signal is carried out to exhibit the depressed amplitudes of high-frequency components, which demonstrates that the proposed method is able to reduce the resonance in AFM high-speed scanning, so as to improve the capacity of rapidly generating high-quality images. Finally, convincing comparison experiments are implemented to verify the imaging performance of the designed scanning algorithm.

References

1

Li, M.; Xi, N.; Wang, Y. C.; Liu, L. Q. Advances in atomic force microscopy for single-cell analysis. Nano Res. 2019, 12, 703–718.

2

Li, M.; Liu, L. Q.; Zambelli, T. Fluidfm for single-cell biophysics. Nano Res. 2022, 15, 773–786.

3

Peric, O.; Hannebelle, M.; Adams, J. D.; Fantner, G. E. Microfluidic bacterial traps for simultaneous fluorescence and atomic force microscopy. Nano Res. 2017, 10, 3896–3908.

4

Liu, H. J.; Wen, J.; Xiao, Y.; Liu, J.; Hopyan, S.; Radisic, M.; Simmons, C. A.; Sun, Y. In situ mechanical characterization of the cell nucleus by atomic force microscopy. ACS Nano 2014, 8, 3821–3828.

5

Ren, J.; Zou, Q. Z. Adaptive-scanning, near-minimum-deformation atomic force microscope imaging of soft sample in liquid: Live mammalian cell example. Ultramicroscopy 2018, 186, 150–157.

6
Huang, K. W. ; Chen, H. C. ; Lee, S. A. ; Fu, L. C. Improving 3D recovery based on super-resolution generative adversarial network and uniform continuous trajectory for atomic force microscopy. In Proceedings of 2021 American Control Conference (ACC), New Orleans, USA, 2021, pp 2601–2606.
7

Lim, K.; Kodera, N.; Wang, H. B.; Mohamed, M. S.; Hazawa, M.; Kobayashi, A.; Yoshida, T.; Hanayama, R.; Yano, S.; Ando, T. et al. High-speed AFM reveals molecular dynamics of human influenza a hemagglutinin and its interaction with exosomes. Nano Lett. 2020, 20, 6320–6328.

8

Luo, Y. F.; Andersson, S. B. Image reconstruction for sub-sampled atomic force microscopy images using deep neural networks. Micron 2020, 130, 102814.

9

Brown, B. P.; Picco, L.; Miles, M. J.; Faul, C. F. J. Opportunities in high-speed atomic force microscopy. Small 2013, 9, 3201–3211.

10

Li, T. W., Zou, Q. Z., Ma, T. X., Singer, J., Su, C. M. Adaptive simultaneous topography and broadband nanomechanical mapping of heterogeneous materials on atomic force microscope. IEEE Trans. Nanotechnol. 2020, 19, 689–698.

11

Rana, M. S.; Pota, H. R.; Petersen, I. R. A survey of methods used to control piezoelectric tube scanners in high-speed AFM imaging. Asian J. Control. 2018, 20, 1379–1399.

12

Wang, A.; Cheng, L.; Yang, C. G.; Hou, Z. G. An adaptive fuzzy predictive controller with hysteresis compensation for piezoelectric actuators. Cogn. Comput. 2020, 12, 736–747.

13
Yong, Y. K. ; Bazaei, A. ; Moheimani, S. O. R. Control of a high-speed nanopositioner for Lissajous-scan video-rate AFM. In Proceedings of 2013 Australian Control Conference (ACC), Fremantle, Australia, 2013, pp 171–176.
14

Rao, A.; Gnecco, E.; Marchetto, D.; Mougin, K.; Schönenberger, M.; Valeri, S.; Meyer, E. The analytical relations between particles and probe trajectories in atomic force microscope nanomanipulation. Nanotechnology 2009, 20, 115706.

15

Ziegler, D.; Meyer, T. R.; Amrein, A.; Bertozzi, A. L.; Ashby, P. D. Ideal scan path for high-speed atomic force microscopy. IEEE/ASME Trans. Mechatron. 2017, 22, 381–391.

16

Chang, P. I.; Huang, P.; Maeng, J.; Andersson, S. B. Local raster scanning for high-speed imaging of biopolymers in atomic force microscopy. Rev. Sci. Instrum. 2011, 82, 063703.

17

Ahmad, A.; Schuh, A.; Rangelow, I. W. Adaptive AFM scan speed control for high aspect ratio fast structure tracking. Rev. Sci. Instrum. 2014, 85, 103706.

18

Lu, H. J.; Wen, Y. B.; Zhang, H.; Xie, H.; Shen, Y. J. 360° multiparametric imaging atomic force microscopy: A method for three-dimensional nanomechanical mapping. Ultramicroscopy 2019, 196, 83–87.

19

Fan, Y. F.; Tan, U. X. Design of a feedforward-feedback controller for a piezoelectric-driven mechanism to achieve high-frequency nonperiodic motion tracking. IEEE/ASME Trans. Mechatron. 2019, 24, 853–862.

20
Tuma, T. ; Lygeros, J. ; Sebastian, A. ; Pantazi, A. Optimal scan trajectories for high-speed scanning probe microscopy. In Proceedings of 2012 American Control Conference (ACC), Montreal, Canada, 2012, pp 3791–3796.
21

Tuma, T.; Lygeros, J.; Kartik, V.; Sebastian, A.; Pantazi, A. High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories. Nanotechnology 2012, 23, 185501.

22

Bazaei, A.; Yong, Y. K.; Moheimani, S. O. R. High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues. Rev. Sci. Instrum. 2012, 83, 063701.

23

Yong, Y. K.; Bazaei, A.; Moheimani, S. O. R. Video-rate Lissajous-scan atomic force microscopy. IEEE Trans. Nanotechnol. 2014, 13, 85–93.

24

Wu, J. W.; Lin, Y. T.; Lo, Y. T., Liu, W. C.; Fu, L. C. Lissajous hierarchical local scanning to increase the speed of atomic force microscopy. IEEE Trans. Nanotechnol. 2015, 14, 810–819.

25

Mahmood, I. A.; Moheimani, S. O. R. Fast spiral-scan atomic force microscopy. Nanotechnology 2009, 20, 365503.

26

Mahmood, I. A.; Moheimani, S. O. R.; Bhikkaji, B. A new scanning method for fast atomic force microscopy. IEEE Trans. Nanotechnol. 2009, 10, 203–216.

27

Bazaei, A.; Yong, Y. K.; Moheimani, S. O. R. Combining spiral scanning and internal model control for sequential AFM imaging at video rate. IEEE/ASME Trans. Mechatron. 2017, 22, 371–380.

28

Rana, M. S.; Pota, H. R.; Petersen, I. R. Spiral scanning with improved control for faster imaging of AFM. IEEE Trans. Nanotechnol. 2014, 13, 541–550.

29

Rana, M. S.; Pota, H. R.; Petersen, I. R. Performance of sinusoidal scanning with MPC in AFM imaging. IEEE/ASME Trans. Mechatron. 2015, 20, 73–83.

30

Bazaei, A.; Maroufi, M.; Fowler, A. G.; Moheimani, S. O. R. Internal model control for spiral trajectory tracking with MEMS AFM scanners. IEEE Trans. Control Syst. Technol. 2016, 24, 1717–1728.

31

Bazaei, A.; Maroufi, M.; Moheimani, S. O. R. Tracking control of constant-linear-velocity spiral reference by LQG method. IFAC-PapersOnLine 2017, 50, 15568–15573.

32

Yong, Y. K.; Moheimani, S. O. R.; Petersen, I. R. High-speed cycloid-scan atomic force microscopy. Nanotechnology 2010, 21, 365503.

33

Wang, K. X.; Ruppert, M. G.; Manzie, C.; Nešić, D.; Yong, Y. K. Adaptive scan for atomic force microscopy based on online optimization: Theory and experiment. IEEE Trans. Control Syst. Technol. 2020, 28, 869–883.

34
Nikooienejad, N. ; Maroufi, M. ; Moheimani, S. O. R. Iterative learning control for high-speed rosette trajectory tracking. In Proceedings of the IEEE 58th Conference on Decision and Control (CDC), Nice, France, 2019, pp 6832–6837.
35

Nikooienejad, N.; Maroufi, M.; Moheimani, S. O. R. Iterative learning control for video-rate atomic force microscopy. IEEE/ASME Trans. Mechatron. 2021, 26, 2127–2138.

36

Nikooienejad, N.; Maroufi, M.; Moheimani, S. O. R. Rosette-scan video-rate atomic force microscopy: Trajectory patterning and control design. Rev. Sci. Instrum. 2019, 90, 073702.

37

Chen, C. L.; Wu, J. W.; Lin, Y. T.; Fu, L. C.; Chen, M. Y. Precision sinusoidal local scan for large-range atomic force microscopy with auxiliary optical microscopy. IEEE/ASME Trans. Mechatron. 2015, 20, 226–236.

38

Schitter, G.; Thurner, P. J.; Hansma, P. K. Design and input-shaping control of a novel scanner for high-speed atomic force microscopy. Mechatronics 2008, 18, 282–288.

39

Fleming, A. J.; Wills, A. G. Optimal periodic trajectories for band-limited systems. IEEE Trans. Control Syst. Technol. 2009, 17, 552–562.

40

Li, L. L.; Huang, J.; Aphale, S. S.; Zhu, L. M. A smoothed raster scanning trajectory based on acceleration-continuous B-spline transition for high-speed atomic force microscopy. IEEE/ASME Trans. Mechatron. 2021, 26, 24–32.

41

Zhang, K. Q.; Hatano, T.; Tien, T.; Herrmann, G.; Edwards, C.; Burgess, S. C.; Miles, M. An adaptive non-raster scanning method in atomic force microscopy for simple sample shapes. Meas. Sci. Technol. 2015, 26, 035401.

42
Wu, Y. N. ; Fan, Z. ; Fang, Y. C. ; Liu, C. H. An intelligent AFM scanning strategy based on autonomous exploration. IEEE/ASME Trans Mechatron., in press, https://doi.org/10.1109/TMECH.2021.3098223.
Nano Research
Pages 6438-6446
Cite this article:
Wu Y, Chang Y, Fang Y, et al. A fast scanning strategy based on trajectory shaping for atomic force microscopy. Nano Research, 2022, 15(7): 6438-6446. https://doi.org/10.1007/s12274-022-4309-3
Topics:

1141

Views

4

Crossref

2

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 22 November 2021
Revised: 10 March 2022
Accepted: 10 March 2022
Published: 10 May 2022
© Tsinghua University Press 2022
Return