AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding

Yu Zhang1,2Ming-Ke Xu2Zhenguo Wang1Tianyu Zhao1Liu-Xin Liu1,2Hao-Bin Zhang1( )Zhong-Zhen Yu2
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

A reduced graphene oxide (rGO)-Ti3C2Tx MXene (rG-M) porous film with the optimizedinterconnected structure, prepared by a controlled foaming process, exhibits a large tensile strength andis efficient for electromagnetic interference shielding with balanced apparent density andelectrical conductivity.

Abstract

Lightweight, flexible, and electrically conductive porous films are promising for efficient electromagnetic interference (EMI) shielding. However, the mechanical and electrical properties of porous films are far from optimum. Herein, we fabricate mechanically flexible and electrically conductive reduced graphene oxide (rGO)-Ti3C2Tx MXene (rG-M) porous films with optimized continuous cellular morphology by a controlled hydrazine foaming process. The presence of MXene prevents excessive expansion of the rG-M film, improves the electron conduction paths, and enhances the mechanical properties. The resultant rG-M porous film has superior mechanical and electric performances compared to its rGO counterpart, giving one of the highest tensile strengths (24.5 MPa) among the porous films, a high electrical conductivity of 74.4 S·cm−1, and an excellent broadband EMI shielding from 8 to 26.5 GHz. A high EMI shielding effectiveness of 52.6 dB is achieved for the porous film by adjusting its thickness and treatment procedure, providing a feasible fabrication route for lightweight and high-performance EMI shielding materials.

Electronic Supplementary Material

Download File(s)
12274_2022_4311_MOESM1_ESM.pdf (1.6 MB)

References

1

Yun, T.; Kim, H.; Iqbal, A.; Cho, Y. S.; Lee, G. S.; Kim, M. K.; Kim, S. J.; Kim, D.; Gogotsi, Y.; Kim, S. O. et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 2020, 32, 1906769.

2

Liu, L. Y.; Deng, H.; Tang, X. P.; Lu, Y. X.; Zhou, J. Y.; Wang, X. F.; Zhao, Y. Y.; Huang, B.; Shi, Y. G. Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. Proc. Natl. Acad. Sci. USA 2021, 118, e2105838118.

3
Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202200705.
4

Zeng, Z. H.; Jiang, F. Z.; Yue, Y.; Han, D. X.; Lin, L. C.; Zhao, S. Y.; Zhao, Y. B.; Pan, Z. Y.; Li, C. J.; Nyström, G. et al. Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 2020, 32, 1908496.

5

Chen, Y.; Li, J. Z.; Li, T.; Zhang, L. K.; Meng, F. B. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 2021, 180, 163–184.

6

Balci, O.; Polat, E. O.; Kakenov, N.; Kocabas, C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 2015, 6, 6628.

7

Li, T.; Zhi, D. D.; Guo, Z. H.; Li, J. Z.; Chen, Y.; Meng, F. B. 3D porous biomass-derived carbon materials: Biomass sources, controllable transformation and microwave absorption application. Green Chem. 2022, 24, 647–674.

8

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

9

Zhang, H. B.; Yan, Q.; Zheng, W. G.; He, Z. X.; Yu, Z. Z. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924.

10

Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

11

Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224.

12

Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 2021, 37, 2108017.

13

Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

14

Zhang, M.; Cao, M. S.; Shu, J. C.; Cao, W. Q.; Li, L.; Yuan, J. Electromagnetic absorber converting radiation for multifunction. Mater. Sci. Eng. R: Rep. 2021, 145, 100627.

15

Cao, M. S.; Shu, J. C.; Wen, B.; Wang, X. X.; Cao, W. Q. Genetic dielectric genes inside 2D carbon-based materials with tunable electromagnetic function at elevated temperature. Small Struct. 2021, 2, 2100104.

16

Zhang, P.; Zhu, Q. Z.; Soomro, R. A.; He, S. Y.; Sun, N.; Qiao, N.; Xu, B. In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors. Adv. Funct. Mater. 2020, 30, 2000922.

17

Lv, W.; Li, Z. J.; Zhou, G. M.; Shao, J. J.; Kong, D. B.; Zheng, X. Y.; Li, B. H.; Li, F.; Kang, F. Y.; Yang, Q. H. Tailoring microstructure of graphene-based membrane by controlled removal of trapped water inspired by the phase diagram. Adv. Funct. Mater. 2014, 24, 3456–3463.

18

Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

19

Zhao, M. Q.; Xie, X. Q.; Ren, C. E.; Makaryan, T.; Anasori, B.; Wang, G. X.; Gogotsi, Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 2017, 29, 1702410.

20

Niu, Z. Q.; Chen, J.; Hng, H. H.; Ma, J.; Chen, X. D. A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 2012, 24, 4144–4150.

21

Lai, D. G.; Chen, X. X.; Wang, Y. Controllable fabrication of elastomeric and porous graphene films with superior foldable behavior and excellent electromagnetic interference shielding performance. Carbon 2020, 158, 728–737.

22

Song, Z. Q.; Li, W. Y.; Bao, Y.; Kong, H. J.; Gan, S. Y.; Wang, W.; Liu, Z. B.; Ma, Y. M.; Han, D. X.; Niu, L. Space-confined graphene films for pressure-sensing applications. ACS Appl. Nano Mater. 2020, 3, 1731–1740.

23

Lai, D. G.; Chen, X. X.; Wang, G.; Xu, X. H.; Wang, Y. Highly conductive porous graphene film with excellent folding resilience for exceptional electromagnetic interference shielding. J. Mater. Chem. C 2020, 8, 8904–8916.

24

Natu, V.; Sokol, M.; Verger, L.; Barsoum, M. W. Effect of edge charges on stability and aggregation of Ti3C2Tz MXene colloidal suspensions. J. Phys. Chem. C 2018, 122, 27745–27753.

25

Qu, D.; Zheng, M.; Zhang, L. G.; Zhao, H. F.; Xie, Z. G.; Jing, X. B.; Haddad, R. E.; Fan, H. Y.; Sun, Z. C. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 2014, 4, 5294.

26

Sambyal, P.; Iqbal, A.; Hong, J.; Kim, H.; Kim, M. K.; Hong, S. M.; Han, M. K.; Gogotsi, Y.; Koo, C. M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2019, 11, 38046–38054.

27

Choi, H. K.; Lee, A.; Park, M.; Lee, D. S.; Bae, S.; Lee, S. K.; Lee, S. H.; Lee, T.; Kim, T. W. Hierarchical porous film with layer-by-layer assembly of 2D copper nanosheets for ultimate electromagnetic interference shielding. ACS Nano 2021, 15, 829–839.

28

Fu, H. L.; Yang, Z. P.; Zhang, Y. Y.; Zhu, M.; Jia, Y. H.; Chao, Z.; Hu, D. M.; Li, Q. W. SWCNT-modulated folding-resistant sandwich-structured graphene film for high-performance electromagnetic interference shielding. Carbon 2020, 162, 490–496.

29

Zhong, J.; Sun, W.; Wei, Q. W.; Qian, X. T.; Cheng, H. M.; Ren, W. C. Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat. Commun. 2018, 9, 3484.

30

Fu, Q. L.; Chen, Y.; Sorieul, M. Wood-based flexible electronics. ACS Nano 2020, 14, 3528–3538.

31

Kuo, P. Y.; Wang, S. Y.; Chen, J. H.; Hsueh, H. C.; Tsai, M. J. Effects of material compositions on the mechanical properties of wood-plastic composites manufactured by injection molding. Mater. Des. 2009, 30, 3489–3496.

32

Smorygo, O.; Gokhale, A. A.; Vazhnova, A.; Stefan, A. Ultra-low density epoxy/polystyrene foam composite with high specific strength and pseudo-plastic behavior. Compos. Commun. 2019, 15, 64–67.

33

Easton, M.; Song, W. Q.; Abbott, T. A comparison of the deformation of magnesium alloys with aluminium and steel in tension, bending and buckling. Mater. Des. 2006, 27, 935–946.

34

Simon, R. M. EMI shielding through conductive plastics. Polym. Plast. Technol. Eng. 1981, 17, 1–10.

35

Zhang, M. K.; Zhang, P. J.; Zhang, C. L.; Wang, Y. S.; Chang, H.; Rao, W. Porous and anisotropic liquid metal composites with tunable reflection ratio for low-temperature electromagnetic interference shielding. Appl. Mater. Today 2020, 19, 100612.

36

Li, X. P.; Zeng, S. P.; E, S. J.; Liang, L. Y.; Bai, Z. Y.; Zhou, Y. Y.; Zhao, B.; Zhang, R. Quick heat dissipation in absorption-dominated microwave shielding properties of flexible poly(vinylidene fluoride)/carbon nanotube/Co composite films with anisotropy-shaped Co (flowers or chains). ACS Appl. Mater. Interfaces 2018, 10, 40789–40799.

37

Song, Q.; Ye, F.; Yin, X. W.; Li, W.; Li, H. J.; Liu, Y. S.; Li, K. Z.; Xie, K. Y.; Li, X. H.; Fu, Q. G. et al. Carbon nanotube-multilayered graphene edge plane core–shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1701583.

38

Lalan, V.; Subodh, G. The smallest anions, induced porosity and graphene interfaces in C12A7:e electrides: A paradigm shift in electromagnetic absorbers and shielding materials. J. Mater. Chem. C 2022, 10, 969–982.

39

Wang, X. X.; Zhang, M.; Shu, J. C.; Wen, B.; Cao, W. Q.; Cao, M. S. Thermally-tailoring dielectric “genes” in graphene-based hetero-structure to manipulate electromagnetic response. Carbon 2021, 184, 136–145.

40

Cao, M. S.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Wen, B.; Yuan, J. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 2018, 14, 1800987.

41

Hart, J. L.; Hantanasirisakul, K.; Lang, A. C.; Anasori, B.; Pinto, D.; Pivak, Y.; van Omme, J. T.; May, S. J.; Gogotsi, Y.; Taheri, M. L. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 2019, 10, 522.

42

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

43

Shui, X. P.; Chung, D. D. L. Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness. J. Electron. Mater. 1997, 26, 928–934.

44

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

45

Zhou, B.; Zhang, Z.; Li, Y. L.; Han, G. J.; Feng, Y. Z.; Wang, B.; Zhang, D. B.; Ma, J. M.; Liu, C. T. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 2020, 12, 4895–4905.

46

Yang, R. L.; Gui, X. C.; Yao, L.; Hu, Q. M.; Yang, L. L.; Zhang, H.; Yao, Y. T.; Mei, H.; Tang, Z. K. Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nanomicro Lett. 2021, 13, 66.

47

Liu, R. T.; Miao, M.; Li, Y. H.; Zhang, J. F.; Cao, S. M.; Feng, X. Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2018, 10, 44787–44795.

48

Zhang, L.; Alvarez, N. T.; Zhang, M. X.; Haase, M.; Malik, R.; Mast, D.; Shanov, V. Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon 2015, 82, 353–359.

49

Moglie, F.; Micheli, D.; Laurenzi, S.; Marchetti, M.; Primiani, V. M. Electromagnetic shielding performance of carbon foams. Carbon 2012, 50, 1972–1980.

50

Crespo, M.; González, M.; Elías, A. L.; Rajukumar, L. P.; Baselga, J.; Terrones, M.; Pozuelo, J. Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. Phys. Status Solidi Rapid Res. Lett. 2014, 8, 698–704.

51

Zeng, Z. H.; Jin, H.; Chen, M. J.; Li, W. W.; Zhou, L. C.; Zhang, Z. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 2016, 26, 303–310.

52

Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.

53

Shen, B.; Li, Y.; Yi, D.; Zhai, W. T.; Wei, X. C.; Zheng, W. G. Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 2016, 102, 154–160.

Nano Research
Pages 4916-4924
Cite this article:
Zhang Y, Xu M-K, Wang Z, et al. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Research, 2022, 15(6): 4916-4924. https://doi.org/10.1007/s12274-022-4311-9
Topics:
Part of a topical collection:

1738

Views

71

Crossref

70

Web of Science

73

Scopus

10

CSCD

Altmetrics

Received: 10 February 2022
Revised: 10 March 2022
Accepted: 11 March 2022
Published: 31 March 2022
© Tsinghua University Press 2022
Return