AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Improving stability of MXenes

Jizhou Jiang1,2Saishuai Bai1Jing Zou1Song Liu3Jyh-Ping Hsu4Neng Li5Guoyin Zhu6Zechao Zhuang7( )Qi Kang8( )Yizhou Zhang6 ( )
School of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
Key Laboratory of Rare Mineral, Ministry of Natural Resources, Geological Experimental Testing Center of Hubei Province, Wuhan 430034, China
Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
Department of Chemical Engineering, “National Taiwan University”, Taipei 10617, Taiwan, China
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
Show Author Information

Graphical Abstract

This work summarized the factors affecting the stability of freshly prepared MXenes, and strategies to increase it.

Abstract

Due to their superior hydrophilicity and conductivity, ultra-high volumetric capacitance, and rich surface-chemistry properties, MXenes exhibit unique and excellent performance in catalysis, energy storage, electromagnetic shielding, and life sciences. Since they are derived from ceramics (MAX phase) through etching, one of the challenges in MXenes preparation is the inevitable exposure of metal atoms on their surface and embedding of anions and cations. Because the as-obtained MXenes are always in a thermodynamically metastable state, they tend to react with trace oxygen or oxygen-containing groups to form metal oxides or degrade, leading to sharply declined activity and impaired performance. Therefore, improving the stability of MXenes-based materials is of practical significance in relevant applications. Unfortunately, there lacks a comprehensive review in the literature on relevant topics. To help promote the wide applications of MXenes, we review from the following aspects: (i) insights into the factors affecting the stability of MXenes-based materials, including oxidation of MXenes flakes, stability of MXenes colloidal solutions, and swelling and degradation of MXenes thin-film, (ii) strategies for enhancing the stability of MXenes-based materials by optimizing MAX phase synthesis and modifying the MXenes preparation, and (iii) techniques for further increasing the stability of freshly prepared MXenes-based materials via controlling the storage conditions, and forming shielding on the surface and/or edge of MXenes flakes. Finally, some outlooks are proposed on the future developments and challenges of highly active and stable MXenes. We aim to provide guidance for the design, preparation, and applications of MXenes-based materials with excellent stability and activity.

References

1

Zhou, J.; Palisaitis, J.; Halim, J.; Dahlqvist, M.; Tao, Q. Z.; Persson, I.; Hultman, L.; Persson, P. O. Å.; Rosen, J. Boridene: Two-dimensional Mo4/3B2−x with ordered metal vacancies obtained by chemical exfoliation. Science 2021, 373, 801–805.

2

Li, B.; Wu, Y.; Li, N.; Chen, X. Z.; Zeng, X. B.; Arramel; Zhao, X. J.; Jiang, J. Z. Single-metal atoms supported on MBenes for robust electrochemical hydrogen evolution. ACS Appl. Mater. Interfaces 2020, 12, 9261–9267.

3

Jiang, J. Z.; Li, N.; Zou, J.; Zhou, X.; Eda, G.; Zhang, Q. F.; Zhang, H.; Li, L. J.; Zhai, T. Y.; Wee, A. T. S. Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chem. Soc. Rev. 2019, 48, 4639–4654.

4

Jiang, J. Z.; Wong, C. P. Y.; Zou, J.; Li, S. S.; Wang, Q. X.; Chen, J. Y.; Qi, D. Y.; Wang, H. Y.; Eda, G.; Chua, D. H. C. et al. Two-step fabrication of single-layer rectangular SnSe flakes. 2D Mater. 2017, 4, 021026.

5

Li, N.; Yang, Y. F.; Shi, Z. H.; Lan, Z. G.; Arramel, A.; Zhang, P.; Ong, W. J.; Jiang, J. Z.; Lu, J. F. Shedding light on the energy applications of emerging 2D hybrid organic–inorganic halide perovskites. iScience 2022, 25, 103753.

6

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y.; et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

7

Zou, J.; Wu, S. L.; Liu, Y.; Sun, Y. J.; Cao, Y.; Hsu, J. P.; Wee, A. T. S.; Jiang, J. Z. An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 2018, 130, 652–663.

8

Jiang, J. Z.; Xiong, Z. G.; Wang, H. T.; Liao, G. D.; Bai, S. S.; Zou, J.; Wu, P. X.; Zhang, P.; Li, X. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J. Mater. Sci. Technol. 2022, 118, 15–24.

9

Zou, J.; Liao, G. D.; Jiang, J. Z.; Xiong, Z. G.; Bai, S. S.; Wang, H. T.; Wu, P. X.; Zhang, P.; Li, X. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 2022, 41, 2201025.

10

Jiang, J. Z.; Ouyang, L.; Zhu, L. H.; Zheng, A. M.; Zou, J.; Yi, X. F.; Tang, H. Q. Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: A study by Raman spectroscopy coupled with first-principles calculations. Carbon 2014, 80, 213–221.

11

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

12

Ahmed, A.; Hossain, M. M.; Adak, B.; Mukhopadhyay, S. Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications. Chem. Mater. 2020, 32, 10296–10320.

13

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

14

Wang, X.; Wang, Y. M.; Jiang, Y. P.; Li, X. L.; Liu, Y.; Xiao, H. H.; Ma, Y.; Huang, Y. Y.; Yuan, G. H. Tailoring ultrahigh energy density and stable dendrite-free flexible anode with Ti3C2Tx MXene nanosheets and hydrated ammonium vanadate nanobelts for aqueous rocking-chair zinc ion batteries. Adv. Funct. Mater. 2021, 31, 2103210.

15

Bai, S. S.; Yang, M. Q.; Jiang, J. Z.; He, X. M.; Zou, J.; Xiong, Z. G.; Liao, G. D.; Liu, S. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Mater. Appl. 2021, 5, 78.

16

Naguib, M.; Barsoum, M. W.; Gogotsi, Y. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 2021, 33, 2103393.

17

Shi, H. H.; Zhang, P. P.; Liu, Z. C.; Park, S.; Lohe, M. R.; Wu, Y. P.; Nia, A. S.; Yang, S.; Feng, X. L. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem., Int. Ed. 2021, 60, 8689–8693.

18
Jiang, J. Z.; Bai, S. S.; Yang, M. Q.; Zou, J.; Li, N.; Peng, J. H.; Wang, H. T.; Xiang, K.; Liu, S.; Zhai, T. Y. Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core–shell nanostructure for high-efficiency electrocatalytic hydrogen evolution. Nano Res. in press, https://doi.org/10.1007/s12274-022-4276-8.
19

VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

20

Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

21

Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488.

22

Maleski, K.; Mochalin, V. N.; Gogotsi, Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 2017, 29, 1632–1640.

23

Boota, M.; Chen, C.; Yang, L.; Kolesnikov, A. I.; Osti, N. C.; Porzio, W.; Barba, L.; Jiang, J. J. Probing molecular interactions at MXene-organic heterointerfaces. Chem. Mater. 2020, 32, 7884–7894.

24

McDaniel, R. M.; Carey, M. S.; Wilson, O. R.; Barsoum, M. W.; Magenau, A. J. D. Well-dispersed nanocomposites using covalently modified, multilayer, 2D titanium carbide (MXene) and in-situ “click” polymerization. Chem. Mater. 2021, 33, 1648–1656.

25

Wong, Z. M.; Tan, T. L.; Tieu, A. J. K.; Yang, S. W.; Xu, G. Q. Computational discovery of transparent conducting in-plane ordered MXene (i-MXene) alloys. Chem. Mater. 2019, 31, 4124–4132.

26

Zou, J.; Wu, J.; Wang, Y. Z.; Deng, F. X.; Jiang, J. Z.; Zhang, Y. Z.; Liu, S.; Li, N.; Zhang, H.; Yu, J. G. et al. Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 2022, 51, 2972–2990.

27

Li, N.; Peng, J. H.; Ong, W. J.; Ma, T. T.; Arramel; Zhang, P.; Jiang, J. Z.; Yuan, X. F.; Zhang, C. F. MXenes: An emerging platform for wearable electronics and looking beyond. Matter 2021, 4, 377–407.

28

Habib, T.; Zhao, X. F.; Shah, S. A.; Chen, Y. X.; Sun, W. M.; An, H.; Lutkenhaus, J. L.; Radovic, M.; Green, M. J. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Mater. Appl. 2019, 3, 8.

29

Hantanasirisakul, K.; Alhabeb, M.; Lipatov, A.; Maleski, K.; Anasori, B.; Salles, P.; Ieosakulrat, C.; Pakawatpanurut, P.; Sinitskii, A.; May, S. J. et al. Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem. Mater. 2019, 31, 2941–2951.

30

Guo, M.; Geng, W. C.; Liu, C. B.; Gu, J. Y.; Zhang, Z. Z.; Tang, Y. H. Ultrahigh areal capacitance of flexible MXene electrodes: Electrostatic and steric effects of terminations. Chem. Mater. 2020, 32, 8257–8265.

31

Kamysbayev, V.; Filatov, A. S.; Hu, H. C.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R. F.; Talapin, D. V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983.

32

Deysher, G.; Shuck, C. E.; Hantanasirisakul, K.; Frey, N. C.; Foucher, A. C.; Maleski, K.; Sarycheva, A.; Shenoy, V. B.; Stach, E. A.; Anasori, B. et al. Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 2020, 14, 204–217.

33

Yang, J.; Liu, R.; Jia, N.; Wu, K.; Fu, X.; Wang, Q.; Cui, W. Novel W-based in-plane chemically ordered (W2/3R1/3)2AlC (R = Gd, Tb, Dy, Ho, Er, Tm, and Lu) MAX phases and their 2D W1.33C MXene derivatives. Carbon 2021, 183, 76–83.

34

Nemani, S. K.; Zhang, B. W.; Wyatt, B. C.; Hood, Z. D.; Manna, S.; Khaledialidusti, R.; Hong, W. C.; Sternberg, M. G.; Sankaranarayanan, S. K. R. S.; Anasori, B. High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 2021, 15, 12815–12825.

35

Tu, T. T.; Liang, B.; Zhang, S. S.; Li, T. Y.; Zhang, B.; Xu, S. Y.; Mao, X. Y.; Cai, Y.; Fang, L.; Ye, X. S. Controllable patterning of porous MXene (Ti3C2) by metal-assisted electro-gelation method. Adv. Funct. Mater. 2021, 31, 2101374.

36

Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644.

37

Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 2014, 516, 78–81.

38

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

39

Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 127, 3979–3983.

40

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

41

Shi, M. J.; Xiao, P.; Lang, J. W.; Yan, C.; Yan, X. B. Porous g-C3N4 and MXene dual-confined FeOOH quantum dots for superior energy storage in an ionic liquid. Adv. Sci. 2020, 7, 1901975.

42

Cao, M. J.; Wang, F.; Wang, L.; Wu, W. L.; Lv, W. J.; Zhu, J. F. Room temperature oxidation of Ti3C2 MXene for supercapacitor electrodes. J. Electrochem. Soc. 2017, 164, A3933–A3942.

43

Le, T. A.; Tran, N. Q.; Hong, Y.; Lee, H. Intertwined titanium carbide MXene within a 3D tangled Polypyrrole nanowires matrix for enhanced supercapacitor performances. Chem. Eur. J. 2019, 25, 1037–1043.

44

Rakhi, R. B.; Ahmed, B.; Hedhili, M. N.; Anjum, D. H.; Alshareef, H. N. Effect of Postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 2015, 27, 5314–5323.

45

Zhang, X. F.; Liu, X. D.; Yan, R. Z.; Yang, J. Q.; Liu, Y.; Dong, S. L. Ion-assisted self-assembly of Macroporous MXene films as supercapacitor electrodes. J. Mater. Chem. C 2020, 8, 2008–2013.

46

Bayram, V.; Ghidiu, M.; Byun, J. J.; Rawson, S. D.; Yang, P.; McDonald, S. A.; Lindley, M.; Fairclough, S.; Haigh, S. J.; Withers, P. J. et al. MXene tunable lamellae architectures for supercapacitor electrodes. ACS Appl. Energy Mater. 2020, 3, 411–422.

47

Liang, K.; Matsumoto, R. A.; Zhao, W.; Osti, N. C.; Popov, I.; Thapaliya, B. P.; Fleischmann, S.; Misra, S.; Prenger, K.; Tyagi, M. et al. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv. Funct. Mater. 2021, 31, 2104007.

48

Gao, M.; Xie, Y.; Yang, W. L.; Lu, L. M. Fabrication of novel electrochemical sensor based on MXene/MWCNTs composite for sensitive detection of synephrine. Int. J. Electrochem. Sci. 2020, 15, 4619–4630.

49

Kalambate, P. K.; Gadhari, N. S.; Li, X.; Rao, Z. X.; Navale, S. T.; Shen, Y.; Patil, V. R.; Huang, Y. H. Recent advances in MXene-based electrochemical sensors and biosensors. TrAC Trends Anal. Chem. 2019, 120, 115643.

50

Shankar, S. S.; Shereema, R. M.; Rakhi, R. B. Electrochemical determination of adrenaline using MXene/graphite composite paste electrodes. ACS Appl. Mater. Interfaces 2018, 10, 43343–43351.

51

Rasheed, P. A.; Pandey, R. P.; Jabbar, K. A.; Ponraj, J.; Mahmoud, K. A. Sensitive electrochemical detection of L-cysteine based on a highly stable Pd@Ti3C2Tx (MXene) nanocomposite modified glassy carbon electrode. Anal. Methods 2019, 11, 3851–3856.

52

Zhang, Y. P.; Wang, L. L.; Zhao, L. J.; Wang, K.; Zheng, Y. Q.; Yuan, Z. Y.; Wang, D. Y.; Fu, X. Y.; Shen, G. Z.; Han, W. Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films. Adv. Mater. 2021, 33, 2007890.

53

Wang, H. C.; Zhou, R. C.; Li, D. H.; Zhang, L. R.; Ren, G. Z.; Wang, L.; Liu, J. H.; Wang, D. Y.; Tang, Z. H.; Lu, G. et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 2021, 15, 9690–9700.

54

Ho, D. H.; Choi, Y. Y.; Jo, S. B.; Myoung, J. M.; Cho, J. H. Sensing with MXenes: Progress and prospects. Adv. Mater. 2021, 33, 2005846.

55

Chao, M. Y.; He, L. Z.; Gong, M.; Li, N.; Li, X. B.; Peng, L. F.; Shi, F.; Zhang, L. Q.; Wan, P. B. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 2021, 15, 9746–9758.

56

Raagulan, K.; Braveenth, R.; Kim, B. M.; Lim, K. J.; Lee, S. B.; Kim, M.; Chai, K. Y. An effective utilization of MXene and its effect on electromagnetic interference shielding: Flexible, free-standing and thermally conductive composite from MXene-PAT-poly(P-aminophenol)-polyaniline co-polymer. RSC Adv. 2020, 10, 1613–1633.

57

Fan, Z. M.; Wang, D. L.; Yuan, Y.; Wang, Y. S.; Cheng, Z. J.; Liu, Y. Y.; Xie, Z. M. A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122696.

58

Li, G. J.; Amer, N.; Hafez, H. A.; Huang, S. H.; Turchinovich, D.; Mochalin, V. N.; Hegmann, F. A.; Titova, L. V. Dynamical control over terahertz electromagnetic interference shielding with 2D Ti3C2Ty MXene by ultrafast optical pulses. Nano Lett. 2020, 20, 636–643.

59

Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.

60

Han, K. H.; Zhang, X. M.; Deng, P.; Jiao, Q. J.; Chu, E. Y. Study of the thermal catalysis decomposition of ammonium perchlorate-based molecular perovskite with titanium carbide MXene. Vacuum 2020, 180, 109572.

61

Hu, L. Y.; Li, M. Y.; Wei, X. Q.; Wang, H. J.; Wu, Y.; Wen, J.; Gu, W. L.; Zhu, C. Z. Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2T MXene for enhancing water oxidation catalysis. Chem. Eng. J. 2020, 398, 125605.

62

Wang, J. Y.; He, P. L.; Shen, Y. L.; Dai, L. X.; Li, Z.; Wu, Y.; An, C. H. FeNi Nanoparticles on Mo2TiC2Tx MXene@Nickel foam as robust electrocatalysts for overall water splitting. Nano Res. 2021, 14, 3474–3481.

63

Wang, L. K.; Han, M. K.; Shuck, C. E.; Wang, X. H.; Gogotsi, Y. Adjustable electrochemical properties of solid-solution MXenes. Nano Energy 2021, 88, 106308.

64

Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3D electron delocalization matters. Adv. Mater. 2018, 30, 1803220.

65

Ali, A.; Belaidi, A.; Ali, S.; Helal, M. I.; Mahmoud, K. A. Transparent and conductive Ti3C2Tx (MXene) thin film fabrication by electrohydrodynamic atomization technique. J. Mater. Sci. Mater. Electron. 2016, 27, 5440–5445.

66

Soleymaniha, M.; Shahbazi, M. A.; Rafieerad, A. R.; Maleki, A.; Amiri, A. Promoting role of MXene nanosheets in biomedical sciences: Therapeutic and biosensing innovations. Adv. Healthc. Mater. 2019, 8, 1801137.

67

Li, J.; Li, X. Van Der Bruggen, B. An MXene-based membrane for molecular separation. Environ. Sci. Nano 2020, 7, 1289–1304.

68

Yi, J.; Du, L.; Li, J.; Yang, L. L.; Hu, L. Y.; Huang, S. H.; Dong, Y. C.; Miao, L. L.; Wen, S. C.; Mochalin, V. N. et al. Unleashing the potential of Ti2CTx MXene as a pulse modulator for mid-infrared fiber lasers. 2D Mater. 2019, 6, 045038.

69

Li, Y. X.; Huang, S. H.; Wei, C. J.; Wu, C. L.; Mochalin, V. N. Adhesion of two-dimensional titanium carbides (MXenes) and graphene to silicon. Nat. Commun. 2019, 10, 3014.

70

Mashtalir, O.; Cook, K. M.; Mochalin, V. N.; Crowe, M.; Barsoum, M. W.; Gogotsi, Y. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A 2014, 2, 14334–14338.

71

Zhang, C. J.; Pinilla, S.; McEvoy, N.; Cullen, C. P.; Anasori, B.; Long, E.; Park, S. H.; Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D. et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 2017, 29, 4848–4856.

72

Lotfi, R.; Naguib, M.; Yilmaz, D. E.; Nanda, J.; Van Duin, A. C. T. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J. Mater. Chem. A 2018, 6, 12733–12743.

73

Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2016, 2, 1600255.

74

Wu, X. H.; Wang, Z. Y.; Yu, M. Z.; Xiu, L. Y.; Qiu, J. S. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 2017, 29, 1607017.

75

Huang, S. H.; Mochalin, V. N. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg. Chem. 2019, 58, 1958–1966.

76

Chae, Y.; Kim, S. J.; Cho, S. Y.; Choi, J.; Maleski, K.; Lee, B. J.; Jung, H. T.; Gogotsi, Y.; Lee, Y.; Ahn, C. W. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale 2019, 11, 8387–8393.

77

Huang, S. H.; Mochalin, V. N. Understanding chemistry of two-dimensional transition metal carbides and carbonitrides (MXenes) with gas analysis. ACS Nano 2020, 14, 10251–10257.

78

Jiang, J. Z.; Zou, Y. L.; Arramel; Li, F. Y.; Wang, J. M.; Zou, J.; Li, N. Intercalation engineering of MXenes towards highly efficient photo (electrocatalytic) hydrogen evolution reactions. J. Mater. Chem. A 2021, 9, 24195–24214.

79

Ren, C. E.; Hatzell, K. B.; Alhabeb, M.; Ling, Z.; Mahmoud, K. A.; Gogotsi, Y. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 2015, 6, 4026–4031.

80

Pandey, R. P.; Rasool, K.; Vinod, E. M.; Aïssa, B.; Gogotsi, Y.; Mahmoud, K. A. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J. Mater. Chem. A 2018, 6, 3522–3533.

81

Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684.

82

Berdiyorov, G. R.; Mahmoud, K. A. Effect of surface termination on ion intercalation selectivity of bilayer Ti3C2T2 (T = F, O, and OH) MXene. Appl. Surf. Sci. 2017, 416, 725–730.

83

VahidMohammadi, A.; Mojtabavi, M.; Caffrey, N. M.; Wanunu, M.; Beidaghi, M. Assembling 2D MXenes into highly stable pseudocapacitive electrodes with high power and energy densities. Adv. Mater. 2019, 31, 1806931.

84

Mathis, T. S.; Maleski, K.; Goad, A.; Sarycheva, A.; Anayee, M.; Foucher, A. C.; Hantanasirisakul, K.; Shuck, C. E.; Stach, E. A.; Gogotsi, Y. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 2021, 15, 6420–6429.

85

Shuck, C. E.; Han, M. K.; Maleski, K.; Hantanasirisakul, K.; Kim, S. J.; Choi, J.; Reil, W. E. B.; Gogotsi, Y. Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl. Nano Mater. 2019, 2, 3368–3376.

86

Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 8563.

87

Lim, J.; Jin, X. Y.; Jo, Y. K.; Lee, S.; Hwang, S. J. Kinetically controlled layer-by-layer stacking of metal oxide 2D nanosheets. Angew. Chem., Int. Ed. 2017, 56, 7093–7096.

88

Lu, K.; Hu, Z. Y.; Xiang, Z. H.; Ma, J. Z.; Song, B.; Zhang, J. T.; Ma, H. Y. Cation intercalation in manganese oxide nanosheets: Effects on lithium and sodium storage. Angew. Chem., Int. Ed. 2016, 55, 10448–10452.

89

Cheng, Q.; Yang, T.; Li, Y.; Li, M.; Chan, C. K. Oxidation-reduction assisted exfoliation of LiCoO2 into nanosheets and reassembly into functional Li-ion battery cathodes. J. Mater. Chem. A 2016, 4, 6902–6910.

90

Yun, T.; Lee, G. S.; Choi, J.; Kim, H.; Yang, G. G.; Lee, H. J.; Kim, J. G.; Lee, H. M.; Koo, C. M.; Lim, J. et al. Multidimensional Ti3C2Tx MXene architectures via interfacial electrochemical self-assembly. ACS Nano 2021, 15, 10058–10066.

91

Zhang, H. B.; Li, Z. Y.; Hou, Z. Y.; Mei, H.; Feng, Y.; Xu, B.; Sun, D. F. Self-assembly of MOF on MXene Nanosheets and in-situ conversion into superior nickel phosphates/MXene battery-type electrode. Chem. Eng. J. 2021, 425, 130602.

92

Zhao, D.; Clites, M.; Ying, G.; Kota, S.; Wang, J.; Natu, V.; Wang, X.; Pomerantseva, E.; Cao, M.; Barsoum, M. W. Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for sodium ion storage. Chem. Commun. 2018, 54, 4533–4536.

93

Li, M.; Lu, J.; Luo, K.; Li, Y. B.; Chang, K. K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P. et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737.

94

Lang, Z. Q.; Zhuang, Z. C.; Li, S. K.; Xia, L. X.; Zhao, Y.; Zhao, Y. L.; Han, C. H.; Zhou, L. MXene Surface terminations enable strong metal–support interactions for efficient methanol oxidation on palladium. ACS Appl. Mater. Interfaces 2020, 12, 2400–2406.

95

Gao, G. P.; O’Mullane, A. P.; Du, A. J. 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 2017, 7, 494–500.

96

Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.

97

Ling, C. Y.; Shi, L.; Ouyang, Y. X.; Wang, J. L. Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chem. Mater. 2016, 28, 9026–9032.

98

Jiang, Y. N.; Sun, T.; Xie, X.; Jiang, W.; Li, J.; Tian, B. B.; Su, C. L. Oxygen functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. ChemSusChem 2019, 12, 1368–1373.

99

Xie, Y.; Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y.; Yu, X. Q.; Nam, K. W.; Yang X. Q.; Kolesnikov, A. L.; Kent, P. R. C. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 2014, 136, 6385–6394.

100

Li, Y. B.; Shao, H.; Lin, Z. F.; Lu, J.; Liu, L. Y.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899.

101

Zhang, J. Z.; Kong, N.; Hegh, D.; Usman, K. A. S.; Guan, G. W.; Qin, S.; Jurewicz, I.; Yang, W. R.; Razal, J. M. Freezing titanium carbide aqueous dispersions for ultra-long-term storage. ACS Appl. Mater. Interfaces 2020, 12, 34032–34040.

102

Zhao, X.; Vashisth, A.; Prehn, E.; Sun, W.; Shah, S. A.; Habib, T.; Chen, Y.; Tan, Z.; Lutkenhaus, J. L.; Radovic, M. et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 2019, 1, 513–526.

103

Wu, C. W.; Unnikrishnan, B.; Chen, I. W. P.; Harroun, S. G.; Chang, H. T.; Huang, C. C. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater. 2020, 25, 563–571.

104

Natu, V.; Hart, J. L.; Sokol, M.; Chiang, H.; Taheri, M. L.; Barsoum, M. W. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew. Chem., Int. Ed. 2019, 58, 12655–12660.

105

Ji, J. J.; Zhao, L. F.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Covalent stabilization and functionalization of MXene via Silylation reactions with improved surface properties. FlatChem 2019, 17, 100128.

106

Gao, L. F.; Li, C.; Huang, W. C.; Mei, S.; Lin, H.; Ou, Q.; Zhang, Y.; Guo, J.; Zhang, F.; Xu, S. X. et al. MXene/polymer membranes: Synthesis, properties, and emerging applications. Chem. Mater. 2020, 32, 1703–1747.

107

Savchak, M.; Borodinov, N.; Burtovyy, R.; Anayee, M.; Hu, K. S.; Ma, R. L.; Grant, A.; Li, H. M.; Cutshall, D. B.; Wen, Y. M. et al. Highly conductive and transparent reduced graphene oxide nanoscale films via thermal conversion of polymer-encapsulated graphene oxide sheets. ACS Appl. Mater. Interfaces 2018, 10, 3975–3985.

108

Xiong, R.; Kim, H. S.; Zhang, L. J.; Korolovych, V. F.; Zhang, S. D.; Yingling, Y. G.; Tsukruk, V. V. Wrapping nanocellulose nets around graphene oxide sheets. Angew. Chem., Int. Ed. 2018, 57, 8508–8513.

109

Ling, S. J.; Li, C. X.; Adamcik, J.; Wang, S. H.; Shao, Z. Z.; Chen, X.; Mezzenga, R. Directed growth of silk nanofibrils on graphene and their hybrid nanocomposites. ACS Macro Lett. 2014, 3, 146–152.

110

Krecker, M. C.; Bukharina, D.; Hatter, C. B.; Gogotsi, Y.; Tsukruk, V. V. Bioencapsulated MXene flakes for enhanced stability and composite precursors. Adv. Funct. Mater. 2020, 30, 2004554.

111

Zhang, P.; Soomro, R. A.; Guan, Z. R. X.; Sun, N.; Xu, B. 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Mater. 2020, 29, 163–171.

112

Wu, T.; Pang, X.; Zhao, S. W.; Xu, S. M.; Liu, Z. Q.; Li, Y. S.; Huang, F. O. One-step construction of ordered sulfur-terminated tantalum carbide MXene for efficient overall water splitting. Small Struct. 2022, 3, 2100206.

Nano Research
Pages 6551-6567
Cite this article:
Jiang J, Bai S, Zou J, et al. Improving stability of MXenes. Nano Research, 2022, 15(7): 6551-6567. https://doi.org/10.1007/s12274-022-4312-8
Topics:

1516

Views

137

Crossref

130

Web of Science

135

Scopus

11

CSCD

Altmetrics

Received: 11 February 2022
Revised: 10 March 2022
Accepted: 11 March 2022
Published: 19 May 2022
© Tsinghua University Press 2022
Return