Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Triboelectric nanogenerator (TENG) provides a new solution to the energy supply by harvesting high entropy energy. However, wearable electronic devices have high requirements for flexible, humidity-resistant, and low-cost TENG. Here, environment-friendly and multi-functional wheat starch TENG (S-TENG) was made by a simple and green method. The open-circuit voltage and short-circuit current of S-TENG are 151.4 V and 47.1 μA, respectively. S-TENG can be used not only to drive and intelligently control electronic equipment, but also to effectively harvest energy from body movements and wind. In addition, the output of S-TENG was not negatively affected with the increase in environmental humidity, but increased abnormally. In the range of 20% RH–80% RH, S-TENG can be potentially used as a sensitive self-powered humidity sensor. The S-TENG paves the way for large-scale preparation of multi-functional biomaterials-based TENG, and practical application of self-powered sensing and wearable devices.
Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.
Wang, Z. L. Entropy theory of distributed energy for internet of things. Nano Energy 2019, 58, 669–672.
Liu, Y.; Chen, B. D.; Li, W.; Zu, L. L.; Tang, W.; Wang, Z. L. Bioinspired triboelectric soft robot driven by mechanical energy. Adv. Funct. Mater. 2021, 31, 2104770.
Liu, C. R.; Zhang, N.; Li, J. Q.; Dong, L. X.; Wang, T.; Wang, Z. K.; Wang, G. F.; Zhou, X. F.; Zhang, J. Harvesting ultralow frequency (< 1 Hz) mechanical energy using triboelectric nanogenerator.Nano Energy 2019, 65, 104011.
Xia, K. Q.; Zhu, Z. Y.; Zhang, H. Z.; Du, C. L.; Xu, Z. W.; Wang, R. J. Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano Energy 2018, 50, 571–580.
Lu, X. H.; Xu, Y. H.; Qiao, G. D.; Gao, Q.; Zhang, X. S.; Cheng, T. H.; Wang, Z. L. Triboelectric nanogenerator for entire stroke energy harvesting with bidirectional gear transmission. Nano Energy 2020, 72, 104726.
Lin, H. B.; He, M. H.; Jing, Q. S.; Yang, W. F.; Wang, S. T.; Liu, Y.; Zhang, Y. L.; Li, J.; Li, N.; Ma, Y. W. et al. Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy. Nano Energy 2019, 56, 269–276.
Wang, Y. Q.; Yu, X.; Yin, M. F.; Wang, J. L.; Gao, Q.; Yu, Y.; Cheng, T. H.; Wang, Z. L. Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy. Nano Energy 2021, 82, 105740.
Zhang, C. G.; Liu, Y. B.; Zhang, B. F.; Yang, O.; Yuan, W.; He, L. X.; Wei, X. L.; Wang, J.; Wang, Z. L. Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system. ACS Energy Lett. 2021, 6, 1490–1499.
Zhang, L.; Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Tang, J. F.; Zhang, H. T.; Pan, H.; Zhu, M. H.; Yang, W. Q. et al. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 2016, 28, 1650–1656.
Wang, Y.; Yang, E.; Chen, T. Y.; Wang, J. Y.; Hu, Z. Y.; Mi, J. C.; Pan, X. X.; Xu, M. Y. A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy 2020, 78, 105279.
Ren, Z. W.; Wang, Z. M.; Wang, F.; Li, S. T.; Wang, Z. L. Vibration behavior and excitation mechanism of ultra-stretchable triboelectric nanogenerator for wind energy harvesting. Extreme Mech. Lett. 2021, 45, 101285.
Cheng, P.; Liu, Y. N.; Wen, Z.; Shao, H. Y.; Wei, A. M.; Xie, X. K.; Chen, C.; Yang, Y. Q.; Peng, M. F.; Zhuo, Q. Q. et al. Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy 2018, 54, 156–162.
Xu, M. Y.; Zhao, T. C.; Wang, C.; Zhang, S. L.; Li, Z.; Pan, X. X.; Wang, Z. L. High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano 2019, 13, 1932–1939.
Zhang, D. H.; Shi, J. W.; Si, Y. L.; Li, T. Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy 2019, 61, 132–140.
Liu, G. L.; Xiao, L. F.; Chen, C. Y.; Liu, W. L.; Pu, X. J.; Wu, Z. Y.; Hu, C. G.; Wang, Z. L. Power cables for triboelectric nanogenerator networks for large-scale blue energy harvesting. Nano Energy 2020, 75, 104975.
Feng, Y. W.; Liang, X.; An, J.; Jiang, T.; Wang, Z. L. Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 2021, 81, 105625.
Liang, X.; Liu, Z. R.; Feng, Y. W.; Han, J. J.; Li, L. L.; An, J.; Chen, P. F.; Jiang, T.; Wang, Z. L. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 2021, 83, 105836.
Zhao, L. L.; Duan, J. L.; Liu, L. Q.; Wang, J. W.; Duan, Y. Y.; Vaillant-Roca, L.; Yang, X. Y.; Tang, Q. W. Boosting power conversion efficiency by hybrid triboelectric nanogenerator/silicon tandem solar cell toward rain energy harvesting. Nano Energy 2021, 82, 105773.
Liu, X.; Yu, A. F.; Qin, A. M.; Zhai, J. Y. Highly integrated triboelectric nanogenerator for efficiently harvesting raindrop energy. Adv. Mater. Technol. 2019, 4, 1900608.
Liang, Q. J.; Yan, X. Q.; Liao, X. Q.; Zhang, Y. Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics. Nano Energy 2016, 25, 18–25.
Zhao, Y. Y.; Pang, Z. B.; Duan, J. L.; Duan, Y. Y.; Jiao, Z. B.; Tang, Q. W. Self-powered monoelectrodes made from graphene composite films to harvest rain energy. Energy 2018, 158, 555–563.
Nie, S. X.; Guo, H. Y.; Lu, Y. X.; Zhuo, J. T.; Mo, J. L.; Wang, Z. L. Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting. Adv. Mater. Technol. 2020, 5, 2000454.
Peng, X.; Dong, K.; Ning, C.; Cheng, R. W.; Yi, J.; Zhang, Y. H.; Sheng, F. F.; Wu, Z. Y.; Wang, Z. L. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing. Adv. Funct. Mater. 2021, 31, 2103559.
Ren, Z. W.; Ding, Y. F.; Nie, J. H.; Wang, F.; Xu, L.; Lin, S. Q.; Chen, X. Y.; Wang, Z. L. Environmental energy harvesting adapting to different weather conditions and self-powered vapor sensor based on humidity-responsive triboelectric nanogenerators. ACS Appl. Mater. Interfaces 2019, 11, 6143–6153.
Luo, J. J.; Wang, Z. M.; Xu, L.; Wang, A. C.; Han, K.; Jiang, T.; Lai, Q. S.; Bai, Y.; Tang, W.; Fan, F. R. et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 2019, 10, 5147.
Zhao, J.; Wang, D.; Zhang, F.; Liu, Y.; Chen, B. D.; Wang, Z. L.; Pan, J. S.; Larsson, R.; Shi, Y. J. Real-time and online lubricating oil condition monitoring enabled by triboelectric nanogenerator. ACS Nano 2021, 15, 11869–11879.
Wang, Z. M.; An, J.; Nie, J. H.; Luo, J. J.; Shao, J. J.; Jiang, T.; Chen, B. D.; Tang, W.; Wang, Z. L. A self-powered angle sensor at nanoradian-resolution for robotic arms and personalized medicare. Adv. Mater. 2020, 32, 2001466.
Zhang, C. G.; Liu, L.; Zhou, L. L.; Yin, X.; Wei, X. L.; Hu, Y. X.; Liu, Y. B.; Chen, S. Y.; Wang, J.; Wang, Z. L. Self-powered sensor for quantifying ocean surface water waves based on triboelectric nanogenerator. ACS Nano 2020, 14, 7092–7100.
Pang, Y. K.; Xi, F. B.; Luo, J. J.; Liu, G. X.; Guo, T.; Zhang, C. An alginate film-based degradable triboelectric nanogenerator. RSC Adv. 2018, 8, 6719–6726.
Ma, P.; Zhu, H. R.; Lu, H.; Zeng, Y. M.; Zheng, N.; Wang, Z. L.; Cao, X. Design of biodegradable wheat-straw based triboelectric nanogenerator as self-powered sensor for wind detection. Nano Energy 2021, 86, 106032.
Ma, J. M.; Zhu, J. Q.; Ma, P.; Jie, Y.; Wang, Z. L.; Cao, X. Fish bladder film-based triboelectric nanogenerator for noncontact position monitoring. ACS Energy Lett. 2020, 5, 3005–3011.
Kim, H. J.; Kim, J. H.; Jun, K. W.; Kim, J. H.; Seung, W. C.; Kwon, O. H.; Park, J. Y.; Kim, S. W.; Oh, I. K. Silk nanofiber-networked bio-triboelectric generator: Silk bio-TEG. Adv. Energy Mater. 2016, 6, 1502329.
Kim, J. N.; Lee, J.; Go, T. W.; Rajabi-Abhari, A.; Mahato, M.; Park, J. Y.; Lee, H.; Oh, I. K. Skin-attachable and biofriendly chitosan-diatom triboelectric nanogenerator. Nano Energy 2020, 75, 104904.
Lu, H.; Zhao, W. Y.; Wang, Z. L.; Cao, X. Sugar-based triboelectric nanogenerators for effectively harvesting vibration energy and sugar quality assessment. Nano Energy 2021, 88, 106196.
Xia, K. Q.; Zhu, Z. Y.; Fu, J. M.; Li, Y. M.; Chi, Y.; Zhang, H. Z.; Du, C. L.; Xu, Z. W. A triboelectric nanogenerator based on waste tea leaves and packaging bags for powering electronic office supplies and behavior monitoring. Nano Energy 2019, 60, 61–71.
Chen, Y. D.; Jie, Y.; Wang, J.; Ma, J. M.; Jia, X. T.; Dou, W.; Cao, X. Triboelectrification on natural rose petal for harvesting environmental mechanical energy. Nano Energy 2018, 50, 441–447.
Wang, N. N.; Zheng, Y. B.; Feng, Y. G.; Zhou, F.; Wang, D. A. Biofilm material based triboelectric nanogenerator with high output performance in 95% humidity environment. Nano Energy 2020, 77, 105088.
Liu, D.; Liu, J. M.; Yang, M. S.; Cui, N. Y.; Wang, H. Y.; Gu, L.; Wang, L. F.; Qin, Y. Performance enhanced triboelectric nanogenerator by taking advantage of water in humid environments. Nano Energy 2021, 88, 106303.