AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Progress toward understanding the fullerene-related chemical interactions in perovskite solar cells

Kaikai LiuChengbo Tian ( )Yuming LiangYujie LuoLiqiang XieZhanhua Wei( )
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
Show Author Information

Graphical Abstract

This review provides a broader summary and in-depth insights about the function of fullerene materials in perovskite solar cells and highlights the crucial role of the fullerene-related chemical interaction, including fullerene-perovskite, fullerene-inorganic electron transport layer (IETL), and fullerene-fullerene.

Abstract

Fullerene materials have been widely used to fabricate efficient and stable perovskite solar cells (PSCs) due to their excellent electron transport ability, defect passivation effect, and beyond. Recent studies have shown that fullerene-related chemical interaction has played a crucial role in determining device performance. However, the corresponding fullerene-related chemical interactions are yet well understood. Herein, a comprehensive review of fullerene materials in regulating carrier transport, passivating the surface and grain boundary defects, and enhancing device stability is provided. Specifically, the influence of the fullerene-related chemical interactions, including fullerene-perovskite, fullerene-inorganic electron transport layer (IETL), and fullerene-fullerene, on the device performance is well discussed. Finally, we outline some perspectives for further design and application of fullerene materials to enhance the performance and commercial application of PSCs.

References

1

Dresselhaus, M. S.; Crabtree, G. W.; Buchanan, M. V. Addressing grand energy challenges through advanced materials. MRS Bull. 2005, 30, 518–524.

2

Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.

3

Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

4

Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

5

Bai, S.; Wu, Z. W.; Wu, X. J.; Jin, Y. Z.; Zhao, N.; Chen, Z. H.; Mei, Q. Q.; Wang, X.; Ye, Z. Z.; Song, T. et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res. 2014, 7, 1749–1758.

6

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

7

Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

8

Bi, D. Q.; Yi, C. Y.; Luo, J. S.; Décoppet, J. D.; Zhang, F.; Zakeeruddin, S. M.; Li, X.; Hagfeldt, A.; Grätzel, M. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 2016, 1, 16142.

9

Tan, H. R.; Jain, A.; Voznyy, O.; Lan, X. Z.; GarcÍa de Arquer, F. P.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M. J.; Zhang, B.; Zhao, Y. C. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726.

10

Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T. Y.; Lee, Y. G.; Kim, G.; Shin, H. W.; Seok, S. I.; Lee, J.; Seo, J. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 2018, 3, 682–689.

11

Jeong, M.; Choi, I. W.; Go, E. M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H. W.; Lee, J. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 2020, 369, 1615–1620.

12

Yoo, J. J.; Seo, G.; Chua, M. R.; Park, T. G.; Lu, Y. L.; Rotermund, F.; Kim, Y. K.; Moon, C. S.; Jeon, N. J.; Correa-Baena, J. P. et al. Efficient perovskite solar cells via improved carrier management. Nature 2021, 590, 587–593.

13

Tu, Y. G.; Xu, G. N.; Yang, X. Y.; Zhang, Y. F.; Li, Z. J.; Su, R.; Luo, D. Y.; Yang, W. Q.; Miao, Y.; Cai, R. et al. Mixed-cation perovskite solar cells in space. Sci. China Phys. Mech. Astron. 2019, 62, 974221.

14

Yang, J. M.; Bao, Q. Y.; Shen, L.; Ding, L. M. Potential applications for perovskite solar cells in space. Nano Energy 2020, 76, 105019.

15

Li, X.; Du, J. Y.; Duan, H.; Wang, H. Y.; Fan, L.; Sun, Y. F.; Sui, Y. R.; Yang, J. H.; Wang, F. Y.; Yang, L. L. Moisture-preventing MAPbI3 solar cells with high photovoltaic performance via multiple ligand engineering. Nano Res. 2022, 15, 1375–1382.

16

Tu, Y. G.; Wu, J.; Xu, G. N.; Yang, X. Y.; Cai, R.; Gong, Q. H.; Zhu, R.; Huang, W. Perovskite solar cells for space applications: Progress and challenges. Adv. Mater. 2021, 33, 2006545.

17
Zhao, X. ; Fang, W. H. ; Long, R. ; Prezhdo, O. V. Chemical passivation of methylammonium fragments eliminates traps, extends charge lifetimes, and restores structural stability of CH3NH3PbI3 perovskite. Nano Res., in press, https://doi.org/10.1007/s12274-021-4054-z.
18

Wang, F. Y.; Yang, M. F.; Zhang, Y. H.; Du, J. Y.; Yang, S.; Yang, L. L.; Fan, L.; Sui, Y. R.; Sun, Y. F.; Yang, J. H. Full-scale chemical and field-effect passivation: 21.52% efficiency of stable MAPbI3 solar cells via benzenamine modification. Nano Res. 2021, 14, 2783–2789.

19

Sha, W. E. I.; Ren, X. G.; Chen, L. Z.; Choy, W. C. H. The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 2015, 106, 221104.

20

Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

21

Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.

22

Da, P. M.; Zheng, G. F. Tailoring interface of lead-halide perovskite solar cells. Nano Res. 2017, 10, 1471–1497.

23

Cho, A. N.; Park, N. G. Impact of interfacial layers in perovskite solar cells. ChemSusChem 2017, 10, 3687–3704.

24

Hou, Y.; Du, X. Y.; Scheiner, S.; McMeekin, D. P.; Wang, Z. P.; Li, N.; Killian, M. S.; Chen, H. W.; Richter, M.; Levchuk, I. et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 2017, 358, 1192–1197.

25

Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379.

26

Zhang, F.; Zhu, K. Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 2020, 10, 1902579.

27

Liu, K. K.; Xie, L. Q.; Song, P. Q.; Lin, K. B.; Shen, L. N.; Liang, Y. M.; Lu, J. X.; Feng, W. J.; Guan, X.; Yan, C. Z. et al. Stable perovskite solar cells enabled by simultaneous surface and bulk defects passivation. Sol. RRL 2020, 4, 2000224.

28

Mei, A. Y.; Sheng, Y. S.; Ming, Y.; Hu, Y.; Rong, Y. G.; Zhang, W. H.; Luo, S. L.; Na, G.; Tian, C. B.; Hou, X. M. et al. Stabilizing perovskite solar cells to IEC61215: 2016 standards with over 9, 000-h operational tracking. Joule 2020, 4, 2646–2660.

29

Kim, M.; Jeong, J.; Lu, H.; Lee Tae, K.; Eickemeyer Felix, T.; Liu, Y.; Choi In, W.; Choi Seung, J.; Jo, Y.; Kim, H.-B. et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 2022, 375, 302–306.

30

Yu, W. J.; Sun, X. R.; Xiao, M.; Hou, T.; Liu, X.; Zheng, B. L.; Yu, H.; Zhang, M.; Huang, Y. L.; Hao, X. J. Recent advances on interface engineering of perovskite solar cells. Nano Res. 2022, 15, 85–103.

31

Fang, Y. J.; Bi, C.; Wang, D.; Huang, J. S. The functions of fullerenes in hybrid perovskite solar cells. ACS Energy Lett. 2017, 2, 782–794.

32

Zhang, M.; Lyu, M.; Yun, J. H.; Noori, M.; Zhou, X. J.; Cooling, N. A.; Wang, Q.; Yu, H.; Dastoor, P. C.; Wang, L. Z. Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions. Nano Res. 2016, 9, 1570–1577.

33

Zheng, X. P.; Hou, Y.; Bao, C. X.; Yin, J.; Yuan, F. L.; Huang, Z. R.; Song, K. P.; Liu, J. K.; Troughton, J.; Gasparini, N. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 2020, 5, 131–140.

34

Jia, L. B.; Zhang, L. X.; Ding, L. M.; Yang, S. F. Using fluorinated and crosslinkable fullerene derivatives to improve the stability of perovskite solar cells. J. Semicond. 2021, 42, 120201.

35

Ke, W. J.; Zhao, D. W.; Grice, C. R.; Cimaroli, A. J.; Ge, J.; Tao, H.; Lei, H. W.; Fang, G. J.; Yan, Y. F. Efficient planar perovskite solar cells using room-temperature vacuum-processed C60 electron selective layers. J. Mater. Chem. A 2015, 3, 17971–17976.

36

Collavini, S.; Kosta, I.; Völker, S. F.; Cabanero, G.; Grande, H. J.; Tena-Zaera, R.; Delgado, J. L. Efficient regular perovskite solar cells based on pristine [70]fullerene as electron-selective contact. ChemSusChem 2016, 9, 1263–1270.

37

Wang, Y. C.; Li, X. D.; Zhu, L. P.; Liu, X. H.; Zhang, W. J.; Fang, J. F. Efficient and hysteresis-free perovskite solar cells based on a solution processable polar fullerene electron transport layer. Adv. Energy Mater. 2017, 7, 1701144.

38

Xie, J. S.; Yu, X. G.; Huang, J. B.; Sun, X.; Zhang, Y. H.; Yang, Z. R.; Lei, M.; Xu, L. B.; Tang, Z. G.; Cui, C. et al. Self-organized fullerene interfacial layer for efficient and low-temperature processed planar perovskite solar cells with high UV-light stability. Adv. Sci. 2017, 4, 1700018.

39

Cao, T. T.; Chen, K.; Chen, Q. Y.; Zhou, Y.; Chen, N.; Li, Y. F. Fullerene derivative-modified SnO2 electron transport layer for highly efficient perovskite solar cells with efficiency over 21%. ACS Appl. Mater. Interfaces 2019, 11, 33825–33834.

40

Castro, E.; Murillo, J.; Fernandez-Delgado, O.; Echegoyen, L. Progress in fullerene-based hybrid perovskite solar cells. J. Mater. Chem. C 2018, 6, 2635–2651.

41

Collavini, S.; Saliba, M.; Tress, W. R.; Holzhey, P. J.; Völker, S. F.; Domanski, K.; Turren-Cruz, S. H.; Ummadisingu, A.; Zakeeruddin, S. M.; Hagfeldt, A. et al. Poly(ethylene glycol)-[60]fullerene-based materials for perovskite solar cells with improved moisture resistance and reduced hysteresis. ChemSusChem 2018, 11, 1032–1039.

42

Wang, S. H.; Chen, H. Y.; Zhang, J. D.; Xu, G. Y.; Chen, W. J.; Xue, R. M.; Zhang, M. Y.; Li, Y. W.; Li, Y. F. Targeted therapy for interfacial engineering toward stable and efficient perovskite solar cells. Adv. Mater. 2019, 31, 1903691.

43

Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 2016, 1, 15001.

44

Liang, P. W.; Chueh, C. C.; Williams, S. T.; Jen, A. K. Y. Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells. Adv. Energy Mater. 2015, 5, 1402321.

45
Liang, Y. M.; Song, P. Q.; Tian, H. R.; Tian, C. B.; Tian, W. J.; Nan, Z. A.; Cai, Y. T.; Yang, P. P.; Sun, C.; Chen, J. F. et al. Lead leakage preventable fullerene-porphyrin dyad for efficient and stable perovskite solar cells. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202110139.
46

Li, X. D.; Zhang, W. X.; Guo, X. M.; Lu, C. Y.; Wei, J. Y.; Fang, J. F. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 2022, 375, 434–437.

47

Kan, C. X.; Tang, Z. F.; Yao, Y. X.; Hang, P. J.; Li, B.; Wang, Y.; Sun, X.; Lei, M.; Yang, D. R.; Yu, X. G. Mitigating ion migration by polyethylene glycol-modified fullerene for perovskite solar cells with enhanced stability. ACS Energy Lett. 2021, 6, 3864–3872.

48

Li, C. Z.; Chueh, C. C.; Yip, H. L.; Ding, F. Z.; Li, X. S.; Jen, A. K. Y. Solution-processible highly conducting fullerenes. Adv. Mater. 2013, 25, 2457–2461.

49

Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25, 3727–3732.

50

Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 2015, 8, 1602–1608.

51

Wolff, C. M.; Zu, F. S.; Paulke, A.; Toro, L. P.; Koch, N.; Neher, D. Reduced interface-mediated recombination for high open-circuit voltages in CH3NH3PbI3 solar cells. Adv. Mater. 2017, 29, 1700159.

52

Shao, Y. C.; Xiao, Z. G.; Bi, C.; Yuan, Y. B.; Huang, J. S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784.

53

Bai, Y.; Dong, Q. F.; Shao, Y. C.; Deng, Y. H.; Wang, Q.; Shen, L.; Wang, D.; Wei, W.; Huang, J. S. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat. Commun. 2016, 7, 12806.

54

Meng, L.; You, J. B.; Guo, T. F.; Yang, Y. Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 2016, 49, 155–165.

55

Deng, L. L.; Xie, S. Y.; Gao, F. Fullerene-based materials for photovoltaic applications: Toward efficient, hysteresis-free, and stable perovskite solar cells. Adv. Electron. Mater. 2018, 4, 1700435.

56

Pascual, J.; Delgado, J. L.; Tena-Zaera, R. Physicochemical phenomena and application in solar cells of perovskite: Fullerene films. J. Phys. Chem. Lett. 2018, 9, 2893–2902.

57

Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 2013, 4, 2761.

58

Cao, T. T.; Huang, P.; Zhang, K. C.; Sun, Z. Q.; Zhu, K.; Yuan, L. G.; Chen, K.; Chen, N.; Li, Y. F. Interfacial engineering via inserting functionalized water-soluble fullerene derivative interlayers for enhancing the performance of perovskite solar cells. J. Mater. Chem. A 2018, 6, 3435–3443.

59

Xing, Y.; Sun, C.; Yip, H. L.; Bazan, G. C.; Huang, F.; Cao, Y. New fullerene design enables efficient passivation of surface traps in high performance p–i–n heterojunction perovskite solar cells. Nano Energy 2016, 26, 7–15.

60

Dai, S. M.; Zhang, X.; Chen, W. Y.; Li, X.; Tan, Z. A.; Li, C.; Deng, L. L.; Zhan, X. X.; Lin, M. S.; Xing, Z. et al. Formulation engineering for optimizing ternary electron acceptors exemplified by isomeric PC71BM in planar perovskite solar cells. J. Mater. Chem. A 2016, 4, 18776–18782.

61

Xu, J. X.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M. J.; Jeon, S.; Ning, Z. J.; McDowell, J. J. et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081.

62

Tian, C. B.; Castro, E.; Betancourt-Solis, G.; Nan, Z. A.; Fernandez-Delgado, O.; Jankuru, S.; Echegoyen, L. Fullerene derivative with a branched alkyl chain exhibits enhanced charge extraction and stability in inverted planar perovskite solar cells. New J. Chem. 2018, 42, 2896–2902.

63

Chiang, C. H.; Wu, C. G. Bulk heterojunction perovskite-PCBM solar cells with high fill factor. Nat. Photonics 2016, 10, 196–200.

64

Wu, Y. Z.; Yang, X. D.; Chen, W.; Yue, Y. F.; Cai, M. L.; Xie, F. X.; Bi, E. B.; Islam, A.; Han, L. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 2016, 1, 16148.

65

Zhang, F.; Shi, W. D.; Luo, J. S.; Pellet, N.; Yi, C. Y.; Li, X.; Zhao, X. M.; Dennis, T. J. S.; Li, X. G.; Wang, S. R. et al. Isomer-pure bis-PCBM-assisted crystal engineering of perovskite solar cells showing excellent efficiency and stability. Adv. Mater. 2017, 29, 1606806.

66

Li, Y. W.; Zhao, Y.; Chen, Q.; Yang, Y.; Liu, Y. S.; Hong, Z. R.; Liu, Z. H.; Hsieh, Y. T.; Meng, L.; Li, Y. F. et al. Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 15540–15547.

67

Dong, Q.; Ho, C. H. Y.; Yu, H.; Salehi, A.; So, F. Defect passivation by fullerene derivative in perovskite solar cells with aluminum-doped zinc oxide as electron transporting layer. Chem. Mater. 2019, 31, 6833–6840.

68

Luo, Z. H.; Wu, F.; Zhang, T.; Zeng, X.; Xiao, Y. Q.; Liu, T.; Zhong, C.; Lu, X. H.; Zhu, L. N.; Yang, S. H. et al. Designing a perylene diimide/fullerene hybrid as effective electron transporting material in inverted perovskite solar cells with enhanced efficiency and stability. Angew. Chem., Int. Ed. 2019, 58, 8520–8525.

69

Bertoluzzi, L.; Belisle, R. A.; Bush, K. A.; Cheacharoen, R.; McGehee, M. D.; O’Regan, B. C. In situ measurement of electric-field screening in hysteresis-free PTAA/FA0.83Cs0.17Pb(I0.83Br0.17)3/C60 perovskite solar cells gives an ion mobility of ~ 3 × 10−7 cm2/(V·s), 2 orders of magnitude faster than reported for metal-oxide-contacted perovskite cells with hysteresis. J. Am. Chem. Soc. 2018, 140, 12775–12784.

70

Huang, H. H.; Tsai, H.; Raja, R.; Lin, S. L.; Ghosh, D.; Hou, C. H.; Shyue, J. J.; Tretiak, S.; Chen, W.; Lin, K. F. et al. Robust unencapsulated perovskite solar cells protected by a fluorinated fullerene electron transporting layer. ACS Energy Lett. 2021, 6, 3376–3385.

71

Zhou, Y. Q.; Wu, B. S.; Lin, G. H.; Xing, Z.; Li, S. H.; Deng, L. L.; Chen, D. C.; Yun, D. Q.; Xie, S. Y. Interfacing pristine C60 onto TiO2 for viable flexibility in perovskite solar cells by a low-temperature all-solution process. Adv. Energy Mater. 2018, 8, 1800399.

72

Xu, G. Y.; Wang, S. H.; Bi, P. Q.; Chen, H. Y.; Zhang, M. Y.; Xue, R. M.; Hao, X. T.; Wang, Z. K.; Li, Y. W.; Li, Y. F. Hydrophilic fullerene derivative doping in active layer and electron transport layer for enhancing oxygen stability of perovskite solar cells. Sol. RRL 2020, 4, 1900249.

73

Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X. N.; Kosco, J.; Islam, M. S.; Haque, S. A. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 2017, 8, 15218.

74

Gatti, T.; Menna, E.; Meneghetti, M.; Maggini, M.; Petrozza, A.; Lamberti, F. The renaissance of fullerenes with perovskite solar cells. Nano Energy 2017, 41, 84–100.

75

Elnaggar, M.; Elshobaki, M.; Mumyatov, A.; Luchkin, S. Y.; Dremova, N. N.; Stevenson, K. J.; Troshin, P. A. Molecular engineering of the fullerene-based electron transport layer materials for improving ambient stability of perovskite solar cells. Sol. RRL 2019, 3, 1900223.

76

Jia, L. B.; Chen, M. Q.; Yang, S. F. Functionalization of fullerene materials toward applications in perovskite solar cells. Mater. Chem. Front. 2020, 4, 2256–2282.

77

Fernandez-Delgado, O.; Castro, E.; Ganivet, C. R.; Fosnacht, K.; Liu, F.; Mates, T.; Liu, Y.; Wu, X. J.; Echegoyen, L. Variation of interfacial interactions in PC61BM-like electron-transporting compounds for perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 34408–34415.

78

Taufique, M. F. N.; Mortuza, S. M.; Banerjee, S. Mechanistic insight into the attachment of fullerene derivatives on crystal faces of methylammonium lead iodide based perovskites. J. Phys. Chem. C 2016, 120, 22426–22432.

79

Xing, Z.; Li, S. H.; Hui, Y.; Wu, B. S.; Chen, Z. C.; Yun, D. Q.; Deng, L. L.; Zhang, M. L.; Mao, B. W.; Xie, S. Y. et al. Star-like hexakis[di(ethoxycarbonyl)methano]-C60 with higher electron mobility: An unexpected electron extractor interfaced in photovoltaic perovskites. Nano Energy 2020, 74, 104859.

80

Tian, C. B.; Castro, E.; Wang, T.; Betancourt-Solis, G.; Rodriguez, G.; Echegoyen, L. Improved performance and stability of inverted planar perovskite solar cells using fulleropyrrolidine layers. ACS Appl. Mater. Interfaces 2016, 8, 31426–31432.

81

Tian, C. B.; Zhang, S. J.; Mei, A. Y.; Rong, Y. G.; Hu, Y.; Du, K.; Duan, M.; Sheng, Y. S.; Jiang, P.; Xu, G. Z. et al. A multifunctional bis-adduct fullerene for efficient printable mesoscopic perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 10835–10841.

82

Tian, C. B.; Kochiss, K.; Castro, E.; Betancourt-Solis, G.; Han, H. W.; Echegoyen, L. A dimeric fullerene derivative for efficient inverted planar perovskite solar cells with improved stability. J. Mater. Chem. A 2017, 5, 7326–7332.

83

Tian, C. B.; Lin, K.; Lu, J.; Feng, W.; Song, P.; Xie, L.; Wei, Z. Interfacial bridge using a cis-fulleropyrrolidine for efficient planar perovskite solar cells with enhanced stability. Small Methods 2019, 4, 1900476.

84

Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano 2014, 8, 9815–9821.

85

Liu, H. R.; Li, S. H.; Deng, L. L.; Wang, Z. Y.; Xing, Z.; Rong, X.; Tian, H. R.; Li, X.; Xie, S. Y.; Huang, R. B. et al. Pyridine-functionalized fullerene electron transport layer for efficient planar perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 23982–23989.

86

Li, B. R.; Zhen, J. M.; Wan, Y. Y.; Lei, X. Y.; Liu, Q.; Liu, Y. J.; Jia, L. B.; Wu, X. J.; Zeng, H. L.; Zhang, W. F. et al. Anchoring fullerene onto perovskite film via grafting pyridine toward enhanced electron transport in high-efficiency solar cells. ACS Appl. Mater. Interfaces 2018, 10, 32471–32482.

87

Li, B. R.; Zhen, J. M.; Wan, Y. Y.; Lei, X. Y.; Jia, L. B.; Wu, X. J.; Zeng, H. L.; Chen, M. Q.; Wang, G. W.; Yang, S. F. Steering the electron transport properties of pyridine-functionalized fullerene derivatives in inverted perovskite solar cells: The nitrogen site matters. J. Mater. Chem. A 2020, 8, 3872–3881.

88

Liu, X.; Lin, F.; Chueh, C. C.; Chen, Q.; Zhao, T.; Liang, P. W.; Zhu, Z. L.; Sun, Y.; Jen, A. K. Y. Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable perovskite solar cells. Nano Energy 2016, 30, 417–425.

89

Unger, E. L.; Hoke, E. T.; Bailie, C. D.; Nguyen, W. H.; Bowring, A. R.; Heumüller, T.; Christoforo, M. G.; McGehee, M. D. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 2014, 7, 3690–3698.

90

Wang, H.; Li, F. B.; Wang, P.; Sun, R.; Ma, W.; Chen, M. T.; Miao, W. Q.; Liu, D.; Wang, T. Chlorinated fullerene dimers for interfacial engineering toward stable planar perovskite solar cells with 22.3% efficiency. Adv. Energy Mater. 2020, 10, 2000615.

91

Zhang, M. Y.; Chen, Q.; Xue, R. M.; Zhan, Y.; Wang, C.; Lai, J. Q.; Yang, J.; Lin, H. Z.; Yao, J. L.; Li, Y. W. et al. Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 2019, 10, 4593.

92

Sandoval-Torrientes, R.; Pascual, J.; García-Benito, I.; Collavini, S.; Kosta, I.; Tena-Zaera, R.; Martín, N.; Delgado, J. L. Modified fullerenes for efficient electron transport layer-free perovskite/fullerene blend-based solar cells. ChemSusChem 2017, 10, 2023–2029.

93

Pascual, J.; Collavini, S.; Völker, S. F.; Phung, N.; Palacios-Lidon, E.; Irusta, L.; Grande, H. J.; Abate, A.; Tena-Zaera, R.; Delgado, J. L. Unravelling fullerene-perovskite interactions introduces advanced blend films for performance-improved solar cells. Sustainable Energy Fuels 2019, 3, 2779–2787.

94

Wang, X.; Rakstys, K.; Jack, K.; Jin, H.; Lai, J.; Li, H.; Ranasinghe, C. S. K.; Saghaei, J.; Zhang, G. R.; Burn, P. L. et al. Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of > 21% and improved stability towards humidity. Nat. Commun. 2021, 12, 52.

95

Rajagopal, A.; Liang, P. W.; Chueh, C. C.; Yang, Z. B.; Jen, A. K. Y. Defect passivation via a graded fullerene heterojunction in low-bandgap Pb-Sn binary perovskite photovoltaics. ACS Energy Lett. 2017, 2, 2531–2539.

96

Chang, C. Y.; Wang, C. P.; Raja, R.; Wang, L.; Tsao, C. S.; Su, W. F. High-efficiency bulk heterojunction perovskite solar cell fabricated by one-step solution process using single solvent: Synthesis and characterization of material and film formation mechanism. J. Mater. Chem. A 2018, 6, 4179–4188.

97

Abrusci, A.; Stranks, S. D.; Docampo, P.; Yip, H. L.; Jen, A. K. Y.; Snaith, H. J. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 2013, 13, 3124–3128.

98

Dong, Y.; Li, W. H.; Zhang, X. J.; Xu, Q.; Liu, Q.; Li, C. H.; Bo, Z. S. Highly efficient planar perovskite solar cells via interfacial modification with fullerene derivatives. Small 2016, 12, 1098–1104.

99

Wang, H.; Cai, F. L.; Zhang, M.; Wang, P.; Yao, J. X.; Gurney, R. S.; Li, F. B.; Liu, D.; Wang, T. Halogen-substituted fullerene derivatives for interface engineering of perovskite solar cells. J. Mater. Chem. A 2018, 6, 21368–21378.

100

Zhong, M. Y.; Liang, Y. Q.; Zhang, J. Q.; Wei, Z. X.; Li, Q.; Xu, D. S. Highly efficient flexible MAPbI3 solar cells with a fullerene derivative-modified SnO2 layer as the electron transport layer. J. Mater. Chem. A 2019, 7, 6659–6664.

101

Yang, Z. J.; Zhong, M. Y.; Liang, Y. Q.; Yang, L. W.; Liu, X. Y.; Li, Q.; Zhang, J.; Xu, D. S. SnO2-C60 pyrrolidine tris-acid (CPTA) as the electron transport layer for highly efficient and stable planar Sn-based perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1903621.

102

Wang, J. K.; Datta, K.; Weijtens, C. H. L.; Wienk, M. M.; Janssen, R. A. J. Insights into fullerene passivation of SnO2 electron transport layers in perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1905883.

103

Liu, K.; Chen, S.; Wu, J. H.; Zhang, H. Y.; Qin, M. C.; Lu, X. H.; Tu, Y. F.; Meng, Q. B.; Zhan, X. W. Fullerene derivative anchored SnO2 for high-performance perovskite solar cells. Energy Environ. Sci. 2018, 11, 3463–3471.

104

Xu, G. Y.; Xue, R. M.; Chen, W. J.; Zhang, J. W.; Zhang, M. Y.; Chen, H. Y.; Cui, C. H.; Li, H. K.; Li, Y. W.; Li, Y. F. New strategy for two-step sequential deposition: Incorporation of hydrophilic fullerene in second precursor for high-performance p–i–n planar perovskite solar cells. Adv. Energy Mater. 2018, 8, 1703054.

105

Yao, K.; Leng, S. F.; Liu, Z. L.; Fei, L. F.; Chen, Y. J.; Li, S. B.; Zhou, N. G.; Zhang, J.; Xu, Y. X.; Zhou, L. et al. Fullerene-anchored core–shell ZnO nanoparticles for efficient and stable dual-sensitized perovskite solar cells. Joule 2019, 3, 417–431.

106
Jie, Z.; Leyu, B.; Yuanhang, C.; Baomin, X.; Alex K.-Y, J. Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability. Nano Research Energy, in press, https://doi.org/10.26599/NRE.2022.9120004.
107

Kim, J.; Kim, G.; Kim, T. K.; Kwon, S.; Back, H.; Lee, J.; Lee, S. H.; Kang, H.; Lee, K. Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol-gel ZnO electron collection layer. J. Mater. Chem. A 2014, 2, 17291–17296.

108

Li, S. H.; Xing, Z.; Wu, B. S.; Chen, Z. C.; Yao, Y. R.; Tian, H. R.; Li, M. F.; Yun, D. Q.; Deng, L. L.; Xie, S. Y. et al. Hybrid fullerene-based electron transport layers improving the thermal stability of perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 20733–20740.

109

Xing, Z.; Li, S. H.; Xie, F. F.; Xu, P. Y.; Deng, L. L.; Zhong, X. X.; Xie, S. Y. Mixed fullerene electron transport layers with fluorocarbon chains assembling on the surface: A moisture-resistant coverage for perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 35081–35087.

110

Tian, C. B.; Betancourt-Solis, G.; Nan, Z.; Liu, K. K.; Lin, K. B.; Lu, J. X.; Xie, L. Q.; Echegoyen, L.; Wei, Z. H. Efficient and stable inverted perovskite solar cells enabled by inhibition of self-aggregation of fullerene electron-transporting compounds. Sci. Bull. 2021, 66, 339–346.

111

Wojciechowski, K.; Ramirez, I.; Gorisse, T.; Dautel, O.; Dasari, R.; Sakai, N.; Hardigree, J. M.; Song, S.; Marder, S.; Riede, M. et al. Cross-linkable fullerene derivatives for solution-processed n–i–p perovskite solar cells. ACS Energy Lett. 2016, 1, 648–653.

112

Tao, C.; Van Der Velden, J.; Cabau, L.; Montcada, N. F.; Neutzner, S.; Srimath Kandada, A. R.; Marras, S.; Brambilla, L.; Tommasini, M.; Xu, W. D. et al. Fully solution-processed n–i–p-like perovskite solar cells with planar junction: How the charge extracting layer determines the open-circuit voltage. Adv. Mater. 2017, 29, 1604493.

113

Kang, T.; Tsai, C. M.; Jiang, Y. H.; Gollavelli, G.; Mohanta, N.; Diau, E. W. G.; Hsu, C. S. Interfacial engineering with cross-linkable fullerene derivatives for high-performance perovskite solar cells. ACS Appl. Mater. Interfaces 2017, 9, 38530–38536.

114

Watson, B. L.; Rolston, N.; Bush, K. A.; Leijtens, T.; McGehee, M. D.; Dauskardt, R. H. Cross-linkable, solvent-resistant fullerene contacts for robust and efficient perovskite solar cells with increased JSC and VOC. ACS Appl. Mater. Interfaces 2016, 8, 25896–25904.

115

Song, S.; Hill, R.; Choi, K.; Wojciechowski, K.; Barlow, S.; Leisen, J.; Snaith, H. J.; Marder, S. R.; Park, T. Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite solar cells. Nano Energy 2018, 49, 324–332.

116

Li, M.; Yang, Y. G.; Wang, Z. K.; Kang, T.; Wang, Q.; Turren-Cruz, S. H.; Gao, X. Y.; Hsu, C. S.; Liao, L. S.; Abate, A. Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability. Adv. Mater. 2019, 31, 1901519.

Nano Research
Pages 7139-7153
Cite this article:
Liu K, Tian C, Liang Y, et al. Progress toward understanding the fullerene-related chemical interactions in perovskite solar cells. Nano Research, 2022, 15(8): 7139-7153. https://doi.org/10.1007/s12274-022-4322-6
Topics:

1031

Views

15

Crossref

13

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 27 January 2022
Revised: 11 March 2022
Accepted: 13 March 2022
Published: 28 May 2022
© Tsinghua University Press 2022
Return