AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Revealing efficient catalytic performance of N-CuOx for aerobic oxidative coupling of aliphatic alkynes: A Langmuir–Hinshelwood reaction mechanism

Jun Tang1Bowen Jiao1Wei Chen2( )Fei Ruan1Fengfeng Li1Peixin Cui3( )Chao Wan1Minh Ngoc Ha1,4Van Noi Nguyen4Qingping Ke1( )
College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, the Chinese Academy of Sciences, Nanjing 210008, China
VNU Key Laboratory of Advanced Material for Green Growth, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam
Show Author Information

Graphical Abstract

An N doped copper oxides (N-CuOx), synthesized with hydrothermal method, has been successfully employed as excellent catalyst for homo/cross-coupling of aliphatic alkynes to 1,3-conjugated diynes.

Abstract

Oxidative couplings of aliphatic alkynes are crucial for the production of naturally occurring 1,3-diynes. Herein we report the novel approach for effective synthesis of unsaturated coordinated N doped copper oxides (N-CuOx) catalyst, and uncover that N-CuOx catalyst as an additive-free and cost-effective heterogeneous catalyst has highly catalytic performance for directly oxidative coupling of aliphatic alkynes. The key to achieve efficient oxidative coupling of aliphatic alkynes is the synergistic effect of N species and uncoordinated O/Cu species caused by N dopants, which undergoes the Langmuir–Hinshelwood reaction mechanism. The N-CuOx catalyst displays ~ 89.1% yield for hexadeca-7,9-diyne under mild conditions and stable reusability (5 cycles), showing significant advances compared with the traditionally copper oxides. These findings highlight the heteroatom dopants that provide a new methodology for designing efficient copper catalysts in synthesis of naturally occurring 1,3-diynes.

Electronic Supplementary Material

Download File(s)
12274_2022_4323_MOESM1_ESM.pdf (2.1 MB)

References

1

Hohmann, C.; Schneider, K.; Bruntner, C.; Irran, E.; Nicholson, G.; Bull, A. T.; Jones, A. L.; Brown, R.; Stach, J. E. M.; Goodfellow, M. et al. Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J. Antibiot. 2009, 62, 99–104.

2

Hu, J. P.; Liang, Z. F.; Shen, K. C.; Xie, L.; Zhang, H.; Huang, C. Q.; Huang, Y. B.; Huang, H.; Tang, J. X.; Jiang, Z. et al. Identifying the convergent reaction path from predesigned assembled structures: Dissymmetrical dehalogenation of Br2Py on Ag (111). Nano Res. 2021, 14, 4704–4713.

3

Rida, S. M.; Ashour, F. A.; El-Hawash, S. A. M.; ElSemary, M. M.; Badr, M. H.; Shalaby, M. A. Synthesis of some novel benzoxazole derivatives as anticancer, anti-HIV-1 and antimicrobial agents. Eur. J. Med. Chem. 2005, 40, 949–959.

4

Han, S.; Kim, H. S.; Zhang, M. S.; Xia, Y. Z.; Lee, S. Ni/Cu-catalyzed decarboxylative addition of alkynoic acids to terminal alkynes for the synthesis of gem-1,3-enynes. Org. Lett. 2019, 21, 5426–5431.

5

Knutson, P. C.; Fredericks, H. E.; Ferreira, E. M. Synthesis of 1,3-diynes via cadiot-chodkiewicz coupling of volatile, in situ generated bromoalkynes. Org. Lett. 2018, 20, 6845–6849.

6

Shi Shun, A. L. K.; Tykwinski, R. R. Synthesis of naturally occurring polyynes. Angew. Chem., Int. Ed. 2006, 45, 1034–1057.

7

Bédard, A. C.; Collins, S. K. Phase separation as a strategy toward controlling dilution effects in macrocyclic Glaser–Hay couplings. J. Am. Chem. Soc. 2011, 133, 19976–19981.

8

Ren, P.; Li, Q. L.; Song, T.; Yang, Y. Facile fabrication of the Cu-N-C catalyst with atomically dispersed unsaturated Cu-N2 active sites for highly efficient and selective Glaser–Hay coupling. ACS Appl. Mater. Interfaces 2020, 12, 27210–27218.

9

Chen, J. F.; Li, C. K. Cobalt-catalyzed gem-cross-dimerization of terminal alkynes. ACS Catal. 2020, 10, 3881–3889.

10

Chen, Z.; Shen, R. G.; Chen, C.; Li, J. P.; Li, Y. D. Synergistic effect of bimetallic PdAu nanocrystals on oxidative alkyne homocoupling. Chem. Commun. 2018, 54, 13155–13158.

11

Liu, L. C.; Matsushita, T.; Concepción, P.; Leyva-Pérez, A.; Corma, A. Facile synthesis of surface-clean monodispersed CuOx nanoparticles and their catalytic properties for oxidative coupling of alkynes. ACS Catal. 2016, 6, 2211–2221.

12

Biswas, S.; Mullick, K.; Chen, S. Y.; Kriz, D. A.; Shakil, M. D.; Kuo, C. H.; Angeles-Boza, A. M.; Rossi, A. R.; Suib, S. L. Mesoporous copper/manganese oxide catalyzed coupling of alkynes: Evidence for synergistic cooperative catalysis. ACS Catal. 2016, 6, 5069–5080.

13

Zhang, R. X.; Chen, Y.; Ding, M. H.; Zhao, J. Heterogeneous Cu catalyst in organic transformations. Nano Res. 2022, 15, 2810–2833.

14

Zhang, S. L.; Liu, X. Y.; Wang, T. Q. An efficient copper-catalyzed homocoupling of terminal alkynes to give symmetrical 1,4-disubstituted 1,3-diynes. Adv. Synth. Catal. 2011, 353, 1463–1466.

15

Ye, X. H.; Peng, H. H.; Wei, C. Y.; Yuan, T.; Wojtas, L.; Shi, X. D. Gold-catalyzed oxidative coupling of alkynes toward the synthesis of cyclic conjugated diynes. Chem 2018, 4, 1983–1993.

16

Harcken, C.; Brückner, R.; Rank, E. Total syntheses of (−)-grandinolide and (−)-sapranthin by the sharpless asymmetric dihydroxylation of methyl trans-3-pentenoate: Elucidation of the stereostructure of (−)-sapranthin. Chem. Eur. J. 1998, 4, 2342–2352.

17
Barrero A. F. Herrador M. M. Akssira M. Arteaga P. Romera J. L. Lignans and polyacetylenes from Bupleurumacutifolium J. Nat. Prod 1999 62 946 948 10.1021/np980445p

Barrero, A. F.; Herrador, M. M.; Akssira, M.; Arteaga, P.; Romera, J. L. Lignans and polyacetylenes from Bupleurumacutifolium. J. Nat. Prod 1999, 62, 946–948.

18

Ding, Y. Q.; Wu, Q. Q.; Lin, B.; Guo, Y. L.; Guo, Y.; Wang, Y. S.; Wang, L.; Zhan, W. C. Superior catalytic activity of a Pd catalyst in methane combustion by fine-tuning the phase of ceria-zirconia support. Appl. Catal. B: Environ. 2020, 266, 118631.

19

Li, F. F.; Tang, J.; Ke, Q. P.; Guo, Y.; Ha, M. N.; Wan, C.; Lei, Z. P.; Gu, J.; Ling, Q.; Nguyen, V. N. et al. Investigation into enhanced catalytic performance for epoxidation of styrene over LaSrCoxFe2−xO6 double perovskites: The role of singlet oxygen species promoted by the photothermal effect. ACS Catal. 2021, 11, 11855–11866.

20

Jing, H. Y.; Liu, W.; Zhao, Z. Y.; Zhang, J. W.; Zhu, C.; Shi, Y. T.; Wang, D. S.; Li, Y. D. Electronics and coordination engineering of atomic cobalt trapped by oxygen-driven defects for efficient cathode in solar cells. Nano Energy 2021, 89, 106365.

21

Liu, H.; Jia, W. L.; Yu, X.; Tang, X.; Zeng, X. H.; Sun, Y.; Lei, T. Z.; Fang, H. Y.; Li, T. Y.; Lin, L. Vitamin C-assisted synthesized Mn-Co oxides with improved oxygen vacancy concentration: Boosting lattice oxygen activity for the air-oxidation of 5-(hydroxymethyl)furfural. ACS Catal. 2021, 11, 7828–7844.

22

Tang, J.; Cao, Y. L.; Ruan, F.; Li, F. F.; Jin, Y. X.; Ha, M. N.; Han, X. Y.; Ke, Q. P. New approach for controllable synthesis of N-MnOx microflowers and their superior catalytic performance for benzoxazole synthesis. Ind. Eng. Chem. Res. 2020, 59, 9408–9413.

23

Jin, Y. X.; Li, F. F.; Cui, P. X.; Yang, Y.; Ke, Q. P.; Ha, M. N.; Zhan, W. C.; Ruan, F.; Wan, C.; Lei, Z. et al. Jahn–Teller distortion assisted interstitial nitrogen engineering: Enhanced oxygen dehydrogenation activity of N-doped MnxCo3−xO4 hierarchical micro-nano particles. Nano Res. 2021, 14, 2637–2643.

24

Ke, Q. P.; Jin, Y. X.; Ruan, F.; Ha, M. N.; Li, D. D.; Cui, P. X.; Cao, Y. L.; Wang, H.; Wang, T. T.; Nguyen, V. N. et al. Boosting the activity of catalytic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over nitrogen-doped manganese oxide catalysts. Green Chem. 2019, 21, 4313–4318.

25

Ruan, F.; Li, F. F.; Dong, Z. P.; Ke, Q. P.; Jin, Y. X.; Zhan, W. C.; Ha, M. N.; Tang, J. Enhanced activity for aerobic oxidative of alcohols over manganese oxides stimulated with interstitial nitrogen doping. Green Synth. Catal. 2021, 2, 38–44.

26

Xiao, X. X.; Xu, Y.; Bhavanarushi, S.; Liu, B.; Lv, X. M. Selective C-C coupling of terminal alkynes under an air atmosphere without base over Cu-Nx-C catalysts. New J. Chem. 2020, 44, 20993–20998.

27

Liu, A. N.; Liu, L. C.; Cao, Y.; Wang, J. M.; Si, R.; Gao, F.; Dong, L. Controlling dynamic structural transformation of atomically dispersed CuOx species and influence on their catalytic performances. ACS Catal. 2019, 9, 9840–9851.

28

Balčytis, A.; Ryu, M.; Seniutinas, G.; Juodkazytė, J.; Cowie, B. C. C.; Stoddart, P. R.; Zamengo, M.; Morikawa, J.; Juodkazis, S. Black-CuO: Surface-enhanced Raman scattering and infrared properties. Nanoscale 2015, 7, 18299–18304.

29

Liu, J. H.; Zhang, T. K.; Wang, Z. C.; Dawson, G.; Chen, W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 2011, 21, 14398–14401.

30

Li, J. J.; Zan, W. Y.; Kang, H. X.; Dong, Z. P.; Zhang, X. M.; Lin, Y. X.; Mu, Y. W.; Zhang, F. W.; Zhang, X. M.; Gu, J. Graphitic-N highly doped graphene-like carbon: A superior metal-free catalyst for efficient reduction of CO2. Appl. Catal. B: Environ. 2021, 298, 120510.

31

Zhang, X. R.; Wang, Y. Q.; Wang, K.; Huang, Y. L.; Lyu, D. D.; Yu, F.; Wang, S. B.; Tian, Z. Q.; Shen, P. K.; Jiang, S. P. Active sites engineering via tuning configuration between graphitic-N and thiophenic-S dopants in one-step synthesized graphene nanosheets for efficient water-cycled electrocatalysis. Chem. Eng. J. 2021, 416, 129096.

32

Su, Y. H.; Jiang, H. L.; Zhu, Y. H.; Yang, X. L.; Shen, J. H.; Zou, W. J.; Chen, J. D.; Li, C. Z. Enriched graphitic N-doped carbon-supported Fe3O4 nanoparticles as efficient electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 7281–7287.

33

Peng, S. J.; Gong, F.; Li, L. L.; Yu, D. S.; Ji, D. X.; Zhang, T. R.; Hu, Z.; Zhang, Z. Q.; Chou, S. L.; Du, Y. H. et al. Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis. J. Am. Chem. Soc. 2018, 140, 13644–13653.

34

Gao, Q. Q.; Dai, Y. Q.; Li, C. B.; Yang, L. G.; Li, X. C.; Cui, C. J. Correlation between oxygen vacancies and dopant concentration in Mn-doped ZnO nanoparticles synthesized by co-precipitation technique. J. Alloys Compd. 2016, 684, 669–676.

35

Chaabane, L.; Beyou, E.; Luneau, D.; Baouab, M. H. V. Functionalization of graphene oxide sheets with magnetite nanoparticles for the adsorption of copper ions and investigation of its potential catalytic activity toward the homocoupling of alkynes under green conditions. J. Catal. 2020, 388, 91–103.

36

Alonso, F.; Yus, M. Heterogeneous catalytic homocoupling of terminal alkynes. ACS Catal. 2012, 2, 1441–1451.

37

Yuan, Y. Y.; Wang, Y. Q.; Zhuang, G. L.; Li, Q. Y.; Yang, F. L.; Wang, X. J.; Han, X. G. Supporting a Cu@In2O3 core–shell structure on N-doped graphitic carbon cuboctahedral cages for efficient photocatalytic homo-coupling of terminal alkynes. J. Mater. Chem. A 2021, 9, 24909–24914.

38

Zhu, Y.; Deng, N.; Feng, M. Q.; Liu, P. On the comparable activity in plasmonic photocatalytic and thermocatalytic oxidative homocoupling of alkynes over prereduced copper ferrite. Chin. J. Catal. 2019, 40, 1505–1515.

39

Li, X. D.; Xie, X.; Sun, N.; Liu, Y. H. Gold-catalyzed cadiot-chodkiewicz-type cross-coupling of terminal alkynes with alkynyl hypervalent iodine reagents: Highly selective synthesis of unsymmetrical 1,3-diynes. Angew. Chem., Int. Ed. 2017, 56, 6994–6998.

40

Yin, W. Y.; He, C.; Chen, M.; Zhang, H.; Lei, A. W. Nickel-catalyzed oxidative coupling reactions of two different terminal alkynes using O2 as the oxidant at room temperature: Facile syntheses of unsymmetric 1,3-diynes. Org. Lett. 2009, 11, 709–712.

41

Peng, H. H.; Xi, Y. M.; Ronaghi, N.; Dong, B. L.; Akhmedov, N. G.; Shi, X. D. Gold-catalyzed oxidative cross-coupling of terminal alkynes: Selective synthesis of unsymmetrical 1,3-diynes. J. Am. Chem. Soc. 2014, 136, 13174–13177.

42

Chakraborty, D.; Nandi, S.; Mullangi, D.; Haldar, S.; Vinod, C. P.; Vaidhyanathan, R. Cu/Cu2O nanoparticles supported on a phenol-pyridyl COF as a heterogeneous catalyst for the synthesis of unsymmetrical diynes via Glaser–Hay coupling. ACS Appl. Mater. Interfaces 2019, 11, 15670–15679.

43

Xu, H.; Wu, K. Y.; Tian, J.; Zhu, L.; Yao, X. Q. Recyclable Cu/C3N4 composite catalysed homo- and cross-coupling of terminal alkynes under mild conditions. Green Chem. 2018, 20, 793–797.

44

Sheldon, R. A.; Downing, R. S. Heterogeneous catalytic transformations for environmentally friendly production. Appl. Catal. A: Gen. 1999, 189, 163–183.

45

Li, H. X.; Liu, L. Short-term effects of polyethene and polypropylene microplastics on soil phosphorus and nitrogen availability. Chemosphere 2022, 291, 132984.

46

Shen, H.; Wu, W.; Wang, Z. Y.; Wu, W. Z.; Yuan, Y.; Feng, Y. L. Effect of modified layered double hydroxide on the flammability of intumescent flame retardant PP nanocomposites. J. Appl. Polym. Sci. 2021, 138, 51187.

47

Zhan, J.; Huang, H. G.; Yu, H. Y.; Zhang, X. Z.; Zheng, Z. C.; Wang, Y. D.; Liu, T.; Li, T. X. The combined effects of Cd and Pb enhanced metal binding by root cell walls of the phytostabilizer Athyrium wardii (Hook. ). Environ. Pollut. 2020, 258, 113663.

48
Zhu, J. Y.; Hu, J. H.; Hu, Q.; Zhang, X. Y.; Ushakova, E. V.; Liu, K. K.; Wang, S. X.; Chen, X.; Shan, C. X.; Rogach, A. L. et al. White light afterglow in carbon dots achieved via synergy between the room-temperature phosphorescence and the delayed fluorescence. Small, in press, https://doi.org/10.1002/smll.202105415.
49

Wang, B. L.; Jin, C. X.; Shao, S. J.; Yue, Y. X.; Zhang, Y. T.; Wang, S. S.; Chang, R. Q.; Zhang, H. F.; Zhao, J.; Li, X. N. Electron-deficient Cu site catalyzed acetylene hydrochlorination. Green Energy Environ. 2022, 18, 2105415.

50

Di, J. Q.; Zhang, M.; Chen, Y. X.; Wang, J. X.; Geng, S. S.; Tang, J. Q.; Zhang, Z. H. Copper anchored on phosphorus g-C3N4 as a highly efficient photocatalyst for the synthesis of N-arylpyridin-2-amines. Green Chem. 2021, 23, 1041–1049.

Nano Research
Pages 6076-6083
Cite this article:
Tang J, Jiao B, Chen W, et al. Revealing efficient catalytic performance of N-CuOx for aerobic oxidative coupling of aliphatic alkynes: A Langmuir–Hinshelwood reaction mechanism. Nano Research, 2022, 15(7): 6076-6083. https://doi.org/10.1007/s12274-022-4323-5
Topics:

994

Views

7

Crossref

9

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 11 February 2022
Revised: 12 March 2022
Accepted: 13 March 2022
Published: 06 May 2022
© Tsinghua University Press 2022
Return