AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

The synthesis of MOF derived carbon and its application in water treatment

Jiani Ding1Yijian Tang1Shasha Zheng1Songtao Zhang1Huaiguo Xue1Qingquan Kong2Huan Pang1( )
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
Show Author Information

Graphical Abstract

Metal-organic framework (MOF) derived carbon represents a promising kind of adsorbing material due to the appealing merits such as large surface area and pore volume as well as desirable chemical stability. The practical applications of MOF derived carbon materials and their wide applications for water treatment are comprehensively summarized in this review.

Abstract

In recent years, since water pollution has aroused great public concern, various carbon materials have already been widely applied for water treatment. In this respect, tremendous effort has been made to provide different synthesis methods of carbon materials. Among all carbon materials, metal-organic framework (MOF) derived carbon has always been favored as it possesses several appealing merits such as high specific surface area, large pore volume, and outstanding chemical stability. This review presents the latest development of MOFs as templates and precursors for the fabrication of various carbon materials, including porous carbon, nanocarbon, and graphene, which are pyrolyzed at different temperatures. The article also emphasizes on their future trends and perspectives on the application of water treatment.

References

1

Huang, N.; Zhai, L. P.; Xu, H.; Jiang, D. L. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. J. Am. Chem. Soc. 2017, 139, 2428–2434.

2

Howarth, A. J.; Katz, M. J.; Wang, T. C.; Platero-Prats, A. E.; Chapman, K. W.; Hupp, J. T.; Farha, O. K. High efficiency adsorption and removal of selenate and selenite from water using metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 7488–7494.

3

Yu, C. Q.; Huang, X.; Chen, H.; Godfray, H. C. J.; Wright, J. S.; Hall, J. W.; Gong, P.; Ni, S. Q.; Qiao, S. C.; Huang, G. R. et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520.

4

Han, Y.; Xu, Z.; Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 2013, 23, 3693–3700.

5

Fard, A. K.; McKay, G.; Buekenhoudt, A.; Al Sulaiti, H.; Motmans, F.; Khraisheh, M.; Atieh, M. Inorganic membranes: Preparation and application for water treatment and desalination. Materials 2018, 11, 74.

6

Maćczak, P.; Kaczmarek, H.; Ziegler-Borowska, M. Recent achievements in polymer bio-based flocculants for water treatment. Materials 2020, 13, 3951.

7

Ihsanullah. Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Sep. Purif. Technol. 2019, 209, 307–337.

8

Hilder, T. A.; Gordon, D.; Chung, S. H. Salt rejection and water transport through boron nitride nanotubes. Small 2009, 5, 2183–2190.

9

Xie, B. H.; Shan, C.; Xu, Z.; Li, X. C.; Zhang, X. L.; Chen, J. J.; Pan, B. C. One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation. Chem. Eng. J. 2017, 308, 791–797.

10

Krzywicka, A. Kwarciak-Kozłowska, A. Advanced oxidation processes with coke plant wastewater treatment. Water Sci. Technol. 2014, 69, 1875–1878.

11

Bhadra, B. N.; Lee, J. K.; Cho, C. W.; Jhung, S. H. Remarkably efficient adsorbent for the removal of bisphenol A from water: Bio-MOF-1-derived porous carbon. Chem. Eng. J. 2018, 343, 225–234.

12

Zhang, J.; Fang, J. H.; Han, J. L.; Yan, T. T.; Shi, L. Y.; Zhang, D. S. N, P, S co-doped hollow carbon polyhedra derived from MOF-based core–shell nanocomposites for capacitive deionization. J. Mater. Chem. A 2018, 6, 15245–15252.

13

Bhadra, B. N.; Ahmed, I.; Kim, S.; Jhung, S. H. Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon. Chem. Eng. J. 2017, 314, 50–58.

14

Rego, R. M.; Kuriya, G.; Kurkuri, M. D.; Kigga, M. MOF based engineered materials in water remediation: Recent trends. J. Hazard. Mater. 2021, 403, 123605.

15

Cao, J.; Sun, S. W.; Li, X.; Yang, Z. H.; Xiong, W. P.; Wu, Y.; Jia, M. Y.; Zhou, Y. Y.; Zhou, C. Y.; Zhang, Y. R. Efficient charge transfer in aluminum-cobalt layered double hydroxide derived from Co-ZIF for enhanced catalytic degradation of tetracycline through peroxymonosulfate activation. Chem. Eng. J. 2020, 382, 122802.

16

Wang, H.; Chen, B. H.; Liu, D. J.; Xu, X. T.; Osmieri, L.; Yamauchi, Y. Nanoarchitectonics of metal-organic frameworks for capacitive deionization via controlled pyrolyzed approaches. Small 2022, 18, 2102477.

17

Qiu, S. L.; Xue, M.; Zhu, G. S. Metal-organic framework membranes: From synthesis to separation application. Chem. Soc. Rev. 2014, 43, 6116–6140.

18

Xu, J.; Zhu, X.; Jia, X. L. From low- to high-crystallinity bimetal-organic framework nanosheet with highly exposed boundaries: An efficient and stable electrocatalyst for oxygen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 16629–16639.

19

Feng, L.; Yuan, S.; Zhang, L. L.; Tan, K.; Li, J. L.; Kirchon, A.; Liu, L. M.; Zhang, P.; Han, Y.; Chabal, Y. J. et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 2363–2372.

20

Yang, J. J.; Qin, J. X.; Guo, Z. Y.; Hu, Y.; Zhang, X. Zn-based metal organic framework derivative with uniform metal sites and hierarchical pores for efficient adsorption of formaldehyde. Chin. Chem. Lett. 2021, 32, 1819–1822.

21

Zou, K. Y.; Li, Z. X. Controllable syntheses of MOF-derived materials. Chem.—Eur. J. 2018, 24, 6506–6518.

22

Lü, Y. Y.; Wang, Y. T.; Li, H. L.; Lin, Y.; Jiang, Z. Y.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 13604–13611.

23

Chu, X. Y.; Meng, F. L.; Deng, T.; Zhang, W. Metal organic framework derived porous carbon materials excel as an excellent platform for high-performance packaged supercapacitors. Nanoscale 2021, 13, 5570–5593.

24

Yang, W. P.; Li, X. X.; Li, Y.; Zhu, R. M.; Pang, H. Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 2019, 31, 1804740.

25

Zhao, S. Y.; Li, S.; Long, Y. K.; Shen, X. H.; Zhao, Z. C.; Wei, Q. L.; Wang, S. B.; Zhang, Z.; Zhang, X. J.; Zhang, Z. T. Ce-based heterogeneous catalysts by partial thermal decomposition of Ce-MOFs in activation of peroxymonosulfate for the removal of organic pollutants under visible light. Chemosphere 2021, 280, 130637.

26

Huo, J. B.; Yu, G. C.; Xu, L.; Fu, M. L. Porous walnut-like La2O2CO3 derived from metal-organic frameworks for arsenate removal: A study of kinetics, isotherms, and mechanism. Chemosphere 2021, 271, 129528.

27

Tian, W. J.; Zhang, H. Y.; Duan, X. G.; Sun, H. Q.; Shao, G. S.; Wang, S. B. Porous carbons: Structure-oriented design and versatile applications. Adv. Funct. Mater. 2020, 30, 1909265.

28

Kaneti, Y. V.; Tang, J.; Salunkhe, R. R.; Jiang, X. C.; Yu, A. B.; Wu, K. C. W.; Yamauchi, Y. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 2017, 29, 1604898.

29

Wang, G. L.; Chen, S.; Quan, X.; Yu, H. T.; Zhang, Y. B. Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants. Carbon 2017, 115, 730–739.

30

Ma, W. J.; Wang, N.; Fan, Y. N.; Tong, T. Z.; Han, X. J.; Du, Y. C. Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate. Chem. Eng. J. 2018, 336, 721–731.

31

Liang, C. H.; Tang, Y.; Zhang, X. D.; Chai, H. X.; Huang, Y. M.; Feng, P. ZIF-mediated N-doped hollow porous carbon as a high performance adsorbent for tetracycline removal from water with wide pH range. Environ. Res. 2020, 182, 109059.

32

Fang, X. Z.; Jiang, Y.; Zhang, K. L.; Hu, G.; Hu, W. W. MOF-derived fluorine and nitrogen co-doped porous carbon for an integrated membrane in lithium-sulfur batteries. New J. Chem. 2021, 45, 2361–2365.

33

Guo, J. R.; Xu, X. T.; Hill, J. P.; Wang, L. P.; Dang, J. J.; Kang, Y. Q.; Li, Y. L.; Guan, W. S.; Yamauchi, Y. Graphene-carbon 2D heterostructures with hierarchically-porous P,N-doped layered architecture for capacitive deionization. Chem. Sci. 2021, 12, 10334–10340.

34

Yue, M. L.; Yu, C. Y.; Duan, H. H.; Yang, B. L.; Meng, X. X.; Li, Z. X. Six isomorphous window-beam MOFs: Explore the effects of metal ions on MOF-derived carbon for supercapacitors. Chem.—Eur. J. 2018, 24, 16160–16169.

35

Bhattacharyya, S.; Konkena, B.; Jayaramulu, K.; Schuhmann, W.; Maji, T. K. Synthesis of nano-porous carbon and nitrogen doped carbon dots from an anionic MOF: A trace cobalt metal residue in carbon dots promotes electrocatalytic ORR activity. J. Mater. Chem. A 2017, 5, 13573–13580.

36

Liu, Q. T.; Liu, X. F.; Feng, H. B.; Shui, H. C.; Yu, R. H. Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem. Eng. J. 2017, 314, 320–327.

37

Huang, J. W.; Chen, Y. B.; Yang, J. M.; Zhu, H. B.; Yang, H. Boosting the oxygen reduction performance of MOF-5-derived Fe-N-C electrocatalysts via a dual strategy of cation-exchange and guest-encapsulation. Electrochim. Acta 2021, 366, 137408.

38

Zhang, S. L.; Guan, B. Y.; Lou, X. W. Co-Fe alloy/N-doped carbon hollow spheres derived from dual metal-organic frameworks for enhanced electrocatalytic oxygen reduction. Small 2019, 15, 1805324.

39

Carrasco, J. A.; Romero, J.; Abellán, G.; Hernández-Saz, J.; Molina, S. I.; Martí-Gastaldo, C.; Coronado, E. Small-pore driven high capacitance in a hierarchical carbon via carbonization of Ni-MOF-74 at low temperatures. Chem. Commun. 2016, 52, 9141–9144.

40

Xu, X. T.; Yang, T.; Zhang, Q. W.; Xia, W.; Ding, Z. B.; Eid, K.; Abdullah, A. M.; Hossain, S. A.; Zhang, S. H.; Tang, J. et al. Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes. Chem. Eng. J. 2020, 390, 124493.

41

Xu, S. Z.; Lv, Y. L.; Zeng, X. F.; Cao, D. P. ZIF-derived nitrogen-doped porous carbons as highly efficient adsorbents for removal of organic compounds from wastewater. Chem. Eng. J. 2017, 323, 502–511.

42

Weng, J. Z.; Wang, S. Y.; Zhang, P. X.; Li, C. P.; Wang, G. A review of metal-organic framework-derived carbon electrode materials for capacitive deionization. New Carbon Mater. 2021, 36, 117–132.

43

Joseph, L.; Jun, B. M.; Jang, M.; Park, C. M.; Muñoz-Senmache, J. C.; Hernández-Maldonado, A. J.; Heyden, A.; Yu, M.; Yoon, Y. Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: A review. Chem. Eng. J. 2019, 369, 928–946.

44

Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

45

ben Mosbah, M.; Mechi, L.; Khiari, R.; Moussaoui, Y. Current state of porous carbon for wastewater treatment. Processes 2020, 8, 1651.

46

Lin, P.; Liao, M. X.; Yang, T.; Sheng, X. R.; Wu, Y.; Xu, X. T. Modification of metal-organic framework-derived nanocarbons for enhanced capacitive deionization performance: A mini-review. Front. Chem. 2020, 8, 575350.

47

Yan, T. T.; Xing, G. L.; Ben, T. One-step strategy to synthesize porous carbons by carbonized porous organic materials and their applications. Acta Chim. Sin. 2018, 76, 366–376.

48

Wu, F. M.; Gao, J. P.; Zhai, X. G.; Xie, M. H.; Sun, Y.; Kang, H. Y.; Tian, Q.; Qiu, H. X. Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors. Carbon 2019, 147, 242–251.

49

Sevilla, M.; Mokaya, R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250–1280.

50

Zhang, C.; Kong, R.; Wang, X.; Xu, Y. F.; Wang, F.; Ren, W. F.; Wang, Y. H.; Su, F. B.; Jiang, J. X. Porous carbons derived from hypercrosslinked porous polymers for gas adsorption and energy storage. Carbon 2017, 114, 608–618.

51

Zhang, X.; Chen, A.; Zhong, M.; Zhang, Z. H.; Zhang, X.; Zhou, Z.; Bu, X. H. Metal-organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion. Electrochem. Energy Rev. 2019, 2, 29–104.

52

Wang, J. S.; Zhang, X.; Li, Z.; Ma, Y. Q.; Ma, L. Recent progress of biomass-derived carbon materials for supercapacitors. J. Power Sources 2020, 451, 227794.

53

Shen, F. H.; Liu, J.; Wu, D. W.; Dong, Y. C.; Liu, F.; Huang, H. Design of O2/SO2 dual-doped porous carbon as superior sorbent for elemental mercury removal from flue gas. J. Hazard. Mater. 2019, 366, 321–328.

54

Bae, Y. S.; Snurr, R. Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem. , Int. Ed. 2011, 50, 11586–11596.

55

Sevilla, M.; Fuertes, A. B. Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ. Sci. 2011, 4, 1765–1771.

56

Li, M. M.; Xu, F.; Li, H. R.; Wang, Y. Nitrogen-doped porous carbon materials: Promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. Catal. Sci. Technol. 2016, 6, 3670–3693.

57

Zhang, P.; Sun, F.; Xiang, Z. H.; Shen, Z. G.; Yun, J.; Cao, D. P. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 442–450.

58

Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23.

59

Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.

60

Hao, M. J.; Qiu, M. Q.; Yang, H.; Hu, B. W.; Wang, X. X. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci. Total Environ. 2021, 760, 143333.

61

Chen, S. R.; Li, Y. Q.; Mi, L. M. Porous carbon derived from metal organic framework for gas storage and separation: The size effect. Inorg. Chem. Commun. 2020, 118, 107999.

62

Li, A.; Tong, Y.; Cao, B.; Song, H. H.; Li, Z. H.; Chen, X. H.; Zhou, J. S.; Chen, G.; Luo, H. M. MOF-derived multifractal porous carbon with ultrahigh lithium-ion storage performance. Sci. Rep. 2017, 7, 40574.

63

Chaikittisilp, W.; Ariga, K.; Yamauchi, Y. A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A 2013, 1, 14–19.

64

Yang, L.; Zeng, X. F.; Wang, W. C.; Cao, D. P. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater. 2018, 28, 1704537.

65

Salunkhe, R. R.; Kamachi, Y.; Torad, N. L.; Hwang, S. M.; Sun, Z. Q.; Dou, S. X.; Kim, J. H.; Yamauchi, Y. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J. Mater. Chem. A 2014, 2, 19848–19854.

66

Hu, H. Y.; Ruan, G. H.; Jiang, X. Q.; Pan, H.; Wu, Z. Q; Huang, Y. P. Enhanced ethopabate adsorption in monodispersed porous carbon derived from zeolitic imidazolate framework-8. New J. Chem. 2022, 46, 8224–8231.

67

Zhang, L. J.; Su, Z. X.; Jiang, F. L.; Yang, L. L.; Qian, J. J.; Zhou, Y. F.; Li, W. M.; Hong, M. C. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 2014, 6, 6590–6602.

68

Li, X.; Sun, Q.; Liu, J.; Xiao, B. W.; Li, R. Y.; Sun, X. L. Tunable porous structure of metal organic framework derived carbon and the application in lithium-sulfur batteries. J. Power Sources 2016, 302, 174–179.

69

Pan, X. T.; Bai, L. X.; Wang, H.; Wu, Q. Y.; Wang, H. Y.; Liu, S.; Xu, B. L.; Shi, X. H.; Liu, H. Y. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv. Mater. 2018, 30, 1800180.

70

Xu, H. B.; Zhou, S. H.; Xiao, L. L.; Wang, H. H.; Li, S. Z.; Yuan, Q. H. Fabrication of a nitrogen-doped graphene quantum dot from MOF-derived porous carbon and its application for highly selective fluorescence detection of Fe3+. J. Mater. Chem. C 2015, 3, 291–297.

71

Xu, J. W.; Wang, J. G.; Ge, L. H.; Sun, J. R.; Ma, W. Q.; Ren, M. M.; Cai, X. X.; Liu, W. L.; Yao, J. S. ZIF-8 derived porous carbon to mitigate shuttle effect for high performance aqueous zinc-iodine batteries. J. Colloid Interface Sci. 2022, 610, 98–105.

72

Li, X. Y.; Zhang, J. L.; Li, W. MOF-derived nitrogen-doped porous carbon as metal-free catalysts for acetylene hydrochlorination. J. Ind. Eng. Chem. 2016, 44, 146–154.

73

Zhang, Z.; Chen, Y.; Wang, P.; Wang, Z.; Zuo, C.; Chen, W. Q.; Ao, T. Q. Facile fabrication of N-doped hierarchical porous carbons derived from soft-templated ZIF-8 for enhanced adsorptive removal of tetracycline hydrochloride from water. J. Hazard. Mater. 2022, 423, 127103.

74

Torad, N. L.; Salunkhe, R. R.; Li, Y. Q.; Hamoudi, H.; Imura, M.; Sakka, Y.; Hu, C. C.; Yamauchi, Y. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem.—Eur. J. 2014, 20, 7895–7900.

75

Yang, J.; Chen, H. Q.; Shi, N.; Wang, T.; Liu, J.; Pan, W. P. Porous carbon with uniformly distributed cobalt nanoparticles derived from ZIF-67 for efficient removal of vapor elemental mercury: A combined experimental and DFT study. Chem. Eng. J. 2022, 428, 132095.

76

Wang, Q.; Zhang, Z. H.; Shi, S. J.; Wu, F.; Zhang, Z. G.; Li, G. N.; Suo, Y. G. Highly active cobalt- and nitrogen-doped carbon derived from ZIF-67@melamine towards oxygen reduction reaction. J. Electroanal. Chem. 2021, 894, 115397.

77

Li, J. B.; Yan, D.; Lu, T.; Yao, Y. F.; Pan, L. K. An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem. Eng. J. 2017, 325, 14–24.

78

Cao, X. M.; Sun, Z. J.; Zhao, S. Y.; Wang, B.; Han, Z. B. MOF-derived sponge-like hierarchical porous carbon for flexible all-solid-state supercapacitors. Mater. Chem. Front. 2018, 2, 1692–1699.

79

Liu, N. N.; Liu, X. G.; Pan, J. Q. A new rapid synthesis of hexagonal prism Zn-MOF as a precursor at room temperature for energy storage through pre-ionization strategy. J. Colloid Interf. Sci. 2022, 606, 1364–1373.

80

Li, S. Q.; Zhang, X. D.; Huang, Y. M. Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. J. Hazard. Mater. 2017, 321, 711–719.

81

Cheng, S. S.; Shang, N. Z.; Feng, C.; Gao, S. T.; Wang, C.; Wang, Z. Efficient multicomponent synthesis of propargylamines catalyzed by copper nanoparticles supported on metal-organic framework derived nanoporous carbon. Catal. Commun. 2017, 89, 91–95.

82

Chang, L. M.; Li, J. R.; Duan, X. Y.; Liu, W. Porous carbon derived from metal-organic framework (MOF) for capacitive deionization electrode. Electrochim. Acta 2015, 176, 956–964.

83

Yang, S. J.; Kim, T.; Im, J. H.; Kim, Y. S.; Lee, K.; Jung, H.; Park, C. R. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 2012, 24, 464–470.

84

Yang, S. J.; Nam, S.; Kim, T.; Im, J. H.; Jung, H.; Kang, J. H.; Wi, S.; Park, B.; Park, C. R. Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework. J. Am. Chem. Soc. 2013, 135, 7394–7397.

85

del Rio, M.; Escarabajal, J. C. G.; Palomino, G. T.; Cabello, C. P. Zinc/iron mixed-metal MOF-74 derived magnetic carbon nanorods for the enhanced removal of organic pollutants from water. Chem. Eng. J. 2022, 428, 131147.

86

Chen, D. Z.; Chen, C. Q.; Shen, W. S.; Quan, H. Y.; Chen, S. S.; Xie, S. S.; Luo, X. B.; Guo, L. MOF-derived magnetic porous carbon-based sorbent: Synthesis, characterization, and adsorption behavior of organic micropollutants. Adv. Powder Technol. 2017, 28, 1769–1779.

87

Van Tran, T.; Nguyen, D. T. C.; Le, H. T. N.; Tu, T. T. K.; Le, N. D.; Lim, K. T.; Bach, L. G.; Nguyen, T. D. MIL-53 (Fe)-directed synthesis of hierarchically mesoporous carbon and its utilization for ciprofloxacin antibiotic remediation. J. Environ. Chem. Eng. 2019, 7, 102881.

88

Tan, J. B.; Wu, J. Q.; Zhao, J. W.; Xie, L. J.; Li, G. R. Highly dispersed ultrafine Ni particles embedded into MOF-74 arrays by partial carbonization for highly efficient hydrogen evolution. Mater. Adv. 2020, 1, 1212–1219.

89

Mei, H. M.; Li, S.; Dong, J. R.; Zhang, L.; Su, C. Y. Porphyrinic metal-organic frameworks derived carbon-based nanomaterials for hydrogen evolution reaction. ChemistrySelect 2020, 5, 10988–10995.

90

Hou, Y.; Hu, X. J.; Tong, H. Y.; Huang, Y. B.; Cao, R. Unraveling the relationship of the pore structures between the metal-organic frameworks and their derived carbon materials. Inorg. Chem. Commun. 2020, 114, 107825.

91

Cabello, C. P.; Picó, M. F. F.; Maya, F.; del Rio, M.; Palomino, G. T. UiO-66 derived etched carbon/polymer membranes: High-performance supports for the extraction of organic pollutants from water. Chem. Eng. J. 2018, 346, 85–93.

92

Cheng, S. S.; Shang, N. Z.; Zhou, X.; Feng, C.; Gao, S. T.; Wang, C.; Wang, Z. High catalytic activity of a bimetallic AgPd alloy supported on UiO-66 derived porous carbon for transfer hydrogenation of nitroarenes using formic acid-formate as the hydrogen source. New J. Chem. 2017, 41, 9857–9865.

93

Young, C.; Salunkhe, R. R.; Tang, J.; Hu, C. C.; Shahabuddin, M.; Yanmaz, E.; Hossain, S. A.; Kim, J. H.; Yamauchi, Y. Correction: Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: The effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Phys. Chem. Chem. Phys. 2017, 19, 22596.

94

Zhong, M.; Kong, L. J.; Li, N.; Liu, Y. Y.; Zhu, J.; Bu, X. H. Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries. Coordinat. Chem. Rev. 2019, 388, 172–201.

95

Sun, J. K.; Xu, Q. From metal-organic framework to carbon: Toward controlled hierarchical pore structures via a double-template approach. Chem. Commun. 2014, 50, 13502–13505.

96

Salunkhe, R. R.; Kaneti, Y. V.; Kim, J.; Kim, J. H.; Yamauchi, Y. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res. 2016, 49, 2796–2806.

97

Lu, Y.; Liang, J. N.; Deng, S. F.; He, Q. M.; Deng, S. Y.; Hu, Y. Z.; Wang, D. L. Hypercrosslinked polymers enabled micropore-dominant N, S Co-doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy 2019, 65, 103993.

98

Li, Y.; Shan, Y. Y.; Pang, H. Design and synthesis of nitrogen-doped hexagonal NiCoO nanoplates derived from Ni-Co-MOF for high-performance electrochemical energy storage. Chin. Chem. Lett. 2020, 31, 2280–2286.

99

Wang, Q. F.; Zou, R. Q.; Xia, W.; Ma, J.; Qiu, B.; Mahmood, A.; Zhao, R.; Yang, Y. Y. C.; Xia, D. G.; Xu, Q. Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small 2015, 11, 2511–2517.

100

Jiang, Q. Q.; Wang, L.; Wang, Y.; Qin, M. H.; Wu, R.; Huang, Z. X.; Yang, H. J.; Li, Y. X.; Zhou, T. F.; Hu, J. C. Rational design of MoSe2 nanosheet-coated MOF-derived N-doped porous carbon polyhedron for potassium storage. J. Colloid Interf. Sci. 2021, 600, 430–439.

101

Kim, J.; Kim, J.; Kim, J. H.; Park, H. S. Hierarchically open-porous nitrogen-incorporated carbon polyhedrons derived from metal-organic frameworks for improved CDI performance. Chem. Eng. J. 2020, 382, 122996.

102

Liu, Y.; Miao, W.; Fang, X.; Tang, Y. L.; Wu, D. L.; Mao, S. MOF-derived metal-free N-doped porous carbon mediated peroxydisulfate activation via radical and non-radical pathways: Role of graphitic N and C−O. Chem. Eng. J. 2020, 380, 122584.

103

Pan, Y.; Zhao, Y. X.; Mu, S. J.; Wang, Y.; Jiang, C. M.; Liu, Q. Z.; Fang, Q. R.; Xue, M.; Qiu, S. L. Cation exchanged MOF-derived nitrogen-doped porous carbons for CO2 capture and supercapacitor electrode materials. J. Mater. Chem. A 2017, 5, 9544–9552.

104

Cai, J. S.; Song, Y. Z.; Chen, X.; Sun, Z. T.; Yi, Y. Y.; Sun, J. Y.; Zhang, Q. MOF-derived conductive carbon nitrides for separator-modified Li-S batteries and flexible supercapacitors. J. Mater. Chem. A 2020, 8, 1757–1766.

105

Chen, L. F.; Lu, Y.; Yu, L.; Lou, X. W. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ. Sci. 2017, 10, 1777–1783.

106

Ma, C.; Mo, Y. H.; Liu, L.; Yu, Y. F.; Chen, A. B. ZIF-derived mesoporous carbon materials prepared by activation via Na2SiO3 for supercapacitor. Chin. Chem. Lett. 2021, 32, 1485–1490.

107

Tan, T.; Tao, P. Y.; Li, X.; Imhanria, S.; Deng, J.; Wang, W. Nitrogen-modified metal-organic framework-based carbon: An effective non-precious electrocatalyst for oxygen reduction reaction. Catal. Commun. 2020, 146, 106135.

108

Wang, S. H.; Liu, L.; Wang, S. M.; Han, Z. B. MOF-templated nitrogen-doped porous carbon materials as efficient electrocatalysts for oxygen reduction reactions. Inorg. Chem. Front. 2017, 4, 1231–1237.

109

Zhang, J.; Yan, T. T.; Fang, J. H.; Shen, J. J.; Shi, L. Y.; Zhang, D. S. Enhanced capacitive deionization of saline water using N-doped rod-like porous carbon derived from dual-ligand metal-organic frameworks. Environ. Sci. :Nano 2020, 7, 926–937.

110

Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.

111

Sui, X. Y.; Huang, X. K.; Pu, H. H.; Wang, Y. L.; Chen, J. H. Tailoring MOF-derived porous carbon nanorods confined red phosphorous for superior potassium-ion storage. Nano Energy 2021, 83, 105797.

112

Shi, X. D.; Chen, Y. X.; Lai, Y. Q.; Zhang, K.; Li, J.; Zhang, Z. A. Metal organic frameworks templated sulfur-doped mesoporous carbons as anode materials for advanced sodium ion batteries. Carbon 2017, 123, 250–258.

113

Wu, H. B.; Wei, S. Y.; Zhang, L.; Xu, R.; Hng, H. H.; Lou, X. W. Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. Chem.—Eur. J. 2013, 19, 10804–10808.

114

Gu, Y. Y.; Miao, L.; Yin, Y.; Liu, M. X.; Gan, L. H.; Li, L. C. Highly N/O co-doped ultramicroporous carbons derived from nonporous metal-organic framework for high performance supercapacitors. Chin. Chem. Lett. 2021, 32, 1491–1496.

115

Liu, W.; Li, S. Q.; Liu, W. X.; Zhang, Q.; Shao, J.; Tian, J. L. MOF-derived B, N co-doped porous carbons as metal-free catalysts for highly efficient nitro aromatics reduction. J. Environ. Chem. Eng. 2021, 9, 105689.

116

Chen, L.; Chen, Z.; Liu, X. D.; Wang, X. L. Bimetallic metal-organic framework derived doped carbon nanostructures as high-performance electrocatalyst towards oxygen reactions. Nano Res. 2021, 14, 1533–1540.

117

Song, Z. X.; Liu, W. W.; Cheng, N. C.; Banis, M. N.; Li, X.; Sun, Q.; Xiao, B. W.; Liu, Y. L.; Lushington, A.; Li, R. Y. et al. Origin of the high oxygen reduction reaction of nitrogen and sulfur co-doped MOF-derived nanocarbon electrocatalysts. Mater. Horiz. 2017, 4, 900–907.

118

Zheng, S. S.; Li, X. R.; Yan, B. Y.; Hu, Q.; Xu, Y. X.; Xiao, X.; Xue, H. G.; Pang, H. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater. 2017, 7, 1602733.

119

Wang, L.; Wen, B.; Yang, H. B.; Qiu, Y.; He, N. R. Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A:Appl. Sci. Manufact. 2020, 135, 105958.

120

Zeng, Q. W.; Wang, L.; Li, X.; You, W. B.; Zhang, J.; Liu, X. H.; Wang, M.; Che, R. C. Double ligand MOF-derived pomegranate-like Ni@C microspheres as high-performance microwave absorber. Appl. Surf. Sci. 2021, 538, 148051.

121

Ahsan, A.; Jabbari, V.; El-Gendy, A. A.; Curry, M. L.; Noveron, J. C. Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon. Appl. Surf. Sci. 2019, 497, 143608.

122

Wang, L.; Bai, X. Y.; Wen, B.; Du, Z.; Lin, Y. Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber. Compos. Part B:Eng. 2019, 166, 464–471.

123

Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

124

Zhang, H.; Zhang, W. X.; Shen, J. M.; Li, Y.; Yan, X.; Qi, J. W.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J. et al. Ag-doped hollow ZIFs-derived nanoporous carbon for efficient hybrid capacitive deionization. Desalination 2020, 473, 114173.

125

Zou, G. Q.; Jia, X. N.; Huang, Z. D.; Li, S. M.; Liao, H. X.; Hou, H. S.; Huang, L. P.; Ji, X. B. Cube-shaped porous carbon derived from MOF-5 as advanced material for sodium-ion batteries. Electrochim. Acta 2016, 196, 413–421.

126

Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 2018, 30, 1705431.

127

Zhang, C. L.; Lu, B. R.; Cao, F. H.; Wu, Z. Y.; Zhang, W.; Cong, H. P.; Yu, S. H. Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction. Nano Energy 2019, 55, 226–233.

128

Ma, F.; Cai, X. F.; Mao, J.; Yu, L.; Li, P. W. Adsorptive removal of aflatoxin B1 from vegetable oils via novel adsorbents derived from a metal-organic framework. J. Hazard. Mater. 2021, 412, 125170.

129

Yan, J.; Huang, Y.; Yan, Y. H.; Zhao, X. X.; Liu, P. B. The composition design of MOF-derived Co-Fe bimetallic autocatalysis carbon nanotubes with controllable electromagnetic properties. Compos. Part A:Appl. Sci. Manufact. 2020, 139, 106107.

130

Ahmed, S.; Shim, J.; Sun, H. J.; Rim, H. R.; Lee, H. K.; Park, G. Nickel decorated bimetallic catalysts derived from metal-organic frameworks as cathode materials for rechargeable zinc-air batteries. Mater. Lett. 2021, 283, 128781.

131

Xu, Y.; Huang, Z. H.; Wang, B.; Liang, Z. Z.; Zhang, C. C.; Wang, Y. Z.; Zhang, W.; Zheng, H. Q.; Cao, R. A two-dimensional multi-shelled metal-organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction. Chem. Commun. 2019, 55, 14805–14808.

132

Qian, J. J.; Li, T. T.; Hu, Y.; Huang, S. M. A bimetallic carbide derived from a MOF precursor for increasing electrocatalytic oxygen evolution activity. Chem. Commun. 2017, 53, 13027–13030.

133

Khan, I. A.; Qian, Y. H.; Badshah, A.; Nadeem, M. A.; Zhao, D. Highly porous carbon derived from MOF-5 as a support of ORR electrocatalysts for fuel cells. ACS Appl. Mater. Interfaces 2016, 8, 17268–17275.

134

Torad, N. L.; Hu, M.; Ishihara, S.; Sukegawa, H.; Belik, A. A.; Imura, M.; Ariga, K.; Sakka, Y.; Yamauchi, Y. Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 2014, 10, 2096–2107.

135

Tang, J.; Salunkhe, R. R.; Zhang, H. B.; Malgras, V.; Ahamad, T.; Alshehri, S. M.; Kobayashi, N.; Tominaka, S.; Ide, Y.; Kim, J. H. et al. Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci. Rep. 2016, 6, 30295.

136

Chi, Y.; Yang, W. P.; Xing, Y. C.; Li, Y.; Pang, H.; Xu, Q. Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage. Nanoscale 2020, 12, 10685–10692.

137

Li, M. M.; Feng, W. J.; Su, W. X.; Wang, X. CoNi-embedded nitrogen-enriched porous carbon framework for long-life lithium-sulfur batteries. J. Solid State Electrochem. 2019, 23, 2317–2324.

138

Tijerina, L. M.; González, C. M. G.; Kharisov, B. I.; Quezada, T. E. S.; Méndez, Y. P.; Kharissova, O. V.; de la Fuente, I. G. Synthesis of MOF-derived bimetallic nanocarbons CuNi@C with potential applications as counter electrodes in solar cells. Mendeleev Commun. 2019, 29, 400–402.

139

Ding, M.; Shi, W. H.; Guo, L.; Leong, Z. Y.; Baji, A.; Yang, H. Y. Bimetallic metal-organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination. J. Mater. Chem. A 2017, 5, 6113–6121.

140

Wang, H.; Bai, Y.; Jiang, X. B.; Zeng, M. Bimetal-organic framework derived from ZIF-67 as anodes for high performance lithium-ion batteries. Appl. Surf. Sci. 2021, 546, 149119.

141

Zou, L. L.; Kitta, M.; Hong, J. H.; Suenaga, K.; Tsumori, N.; Liu, Z.; Xu, Q. Fabrication of a spherical superstructure of carbon nanorods. Adv. Mater. 2019, 31, 1900440.

142

Wei, R. C.; Gu, Y.; Zou, L. L.; Xi, B. J.; Zhao, Y. X.; Ma, Y. N.; Qian, Y. T.; Xiong, S. L.; Xu, Q. Nanoribbon superstructures of graphene nanocages for efficient electrocatalytic hydrogen evolution. Nano Lett. 2020, 20, 7342–7349.

143

Qiu, Y.; Lin, Y.; Yang, H. B.; Wang, L.; Wang, M. Q.; Wen, B. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123207.

144

Li, Z. N.; Han, X. J.; Ma, Y.; Liu, D. W.; Wang, Y. H.; Xu, P.; Li, C. L.; Du, Y. C. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustainable Chem. Eng. 2018, 6, 8904–8913.

145

Azad, U. P.; Ghosh, S.; Verma, C. J.; Singh, A. K.; Singh, A. K.; Prakash, R. Study of the capacitive behavior of MOF-derived nanocarbon polyhedra. ChemistrySelect 2018, 3, 6107–6111.

146

Xia, W.; Zhu, J. H.; Guo, W. H.; An, L.; Xia, D. G.; Zou, R. Q. Well-defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction. J. Mater. Chem. A 2014, 2, 11606–11613.

147

Zhao, R.; Wu, X. X.; Gao, Y. X.; Liu, Y. N.; Gao, J. J.; Chen, Y. M.; Zheng, Z.; Gan, W.; Yuan, Q. H. A unique bimetallic MOF derived carbon-MWCNTs hybrid structure for selective electrochemical determination of lead ion in aqueous solution. Microchem. J. 2020, 158, 105271.

148

Wan, S. A.; Wu, J. D.; Wang, D. P.; Liu, H. L.; Zhang, Z. C.; Ma, J. M.; Wang, C. Co/N-doped carbon nanotube arrays grown on 2D MOFs-derived matrix for boosting the oxygen reduction reaction in alkaline and acidic media. Chin. Chem. Lett. 2021, 32, 816–821.

149

Li, Y. W.; Lu, M. T.; Wu, Y. H.; Ji, Q. H.; Xu, H.; Gao, J. K.; Qian, G. D.; Zhang, Q. C. Morphology regulation of metal-organic framework-derived nanostructures for efficient oxygen evolution electrocatalysis. J. Mater. Chem. A 2020, 8, 18215–18219.

150

Wang, Z. H.; Jin, H. H.; Meng, T.; Liao, K.; Meng, W. Q.; Yang, J. L.; He, D. P.; Xiong, Y. L.; Mu, S. C. Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries. Adv. Funct. Mater. 2018, 28, 1802596.

151

Yang, Y.; Wu, X. Z.; He, C.; Huang, J. B.; Yin, S. Q.; Zhou, M.; Ma, L.; Zhao, W. F.; Qiu, L.; Cheng, C. et al. Metal-organic framework/Ag-based hybrid nanoagents for rapid and synergistic bacterial eradication. ACS Appl. Mater. Interfaces 2020, 12, 13698–13708.

152

Yuan, Q. Y.; Yu, Y. X.; Gong, Y. J.; Bi, X. F. Three-dimensional N-doped carbon nanotube frameworks on Ni foam derived from a metal-organic framework as a bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2020, 12, 3592–3602.

153

Yan, J.; Huang, Y.; Han, X. P.; Gao, X. G.; Liu, P. B. Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption. Compos. Part B:Eng. 2019, 163, 67–76.

154

Jin, H. H.; Zhou, H.; He, D. P.; Wang, Z. H.; Wu, Q. L.; Liang, Q. R.; Liu, S. L.; Mu, S. C. MOF-derived 3D Fe-N-S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. Appl. Catal. B:Environ. 2019, 250, 143–149.

155

Dou, S.; Li, X. Y.; Tao, L.; Huo, J.; Wang, S. Y. Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis. Chem. Commun. 2016, 52, 9727–9730.

156

Zou, L. L.; Hou, C. C.; Liu, Z.; Pang, H.; Xu, Q. Superlong single-crystal metal-organic framework nanotubes. J. Am. Chem. Soc. 2018, 140, 15393–15401.

157

Yan, L. T.; Cao, L.; Dai, P. C.; Gu, X.; Liu, D. D.; Li, L. J.; Wang, Y.; Zhao, X. B. Metal-organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Adv. Funct. Mater. 2017, 27, 1703455.

158

Mohammad, H.; Martin, A. D.; Hill, P. I.; Hodson, N.; Brown, N.; Roberts, E. P. L. Effect of electrochemical regeneration on the surface of a graphite adsorbent loaded with an organic contaminant. Int. J. Environ. Sci. Technol. 2020, 17, 3131–3142.

159

Vedenyapina, M. D.; Borisova, D. A.; Simakova, A. P.; Proshina, L. P.; Vedenyapin, A. A. Adsorption of diclofenac sodium from aqueous solutions on expanded graphite. Solid Fuel Chem. 2013, 47, 59–63.

160

Zhu, Q. L.; Xia, W.; Zheng, L. R.; Zou, R. Q.; Liu, Z.; Xu, Q. Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal-organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett. 2017, 2, 504–511.

161

Sun, D. D.; Liu, S. T.; Zhang, G. J.; Zhou, J. S. NiTe2/N-doped graphitic carbon nanosheets derived from Ni-hexamine coordination frameworks for Na-ion storage. Chem. Eng. J. 2019, 359, 1659–1667.

162

Shen, J. Q.; Wang, P.; Jiang, H. S.; Wang, H.; Pollet, B. G.; Wang, R. F.; Ji, S. MOF derived graphitic carbon nitride/oxygen vacancies-rich zinc oxide nanocomposites with enhanced supercapacitive performance. Ionics 2020, 26, 5155–5165.

163

Zhang, S. H.; Yang, Q.; Xu, X. T.; Liu, X. H.; Li, Q.; Guo, J. R.; Torad, N. L.; Alshehri, S. M.; Ahamad, T.; Hossain, S. A. et al. Assembling well-arranged covalent organic frameworks on MOF-derived graphitic carbon for remarkable formaldehyde sensing. Nanoscale 2020, 12, 15611–15619.

164

Xiong, P. X.; Zhao, X. X.; Xu, Y. H. Nitrogen-doped carbon nanotubes derived from metal-organic frameworks for potassium-ion battery anodes. ChemSusChem 2018, 11, 202–208.

165

Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nat. Chem. 2016, 8, 718–724.

166

Gao, J. J.; Zhang, F.; Gan, W.; Gui, Y. W.; Qiu, H. J.; Li, H. L.; Yuan, Q. H. MOF-derived 2D/3D hierarchical N-doped graphene as support for advanced Pt utilization in ethanol fuel cell. ACS Appl. Mater. Interfaces 2020, 12, 47667–47676.

167

Wu, S. K.; Shen, X. P.; Zhu, G. X.; Zhou, H.; Ji, Z. Y.; Ma, L. B.; Xu, K. Q.; Yang, J.; Yuan, A. H. Metal organic framework derived NiFe@N-doped graphene microtube composites for hydrogen evolution catalyst. Carbon 2017, 116, 68–76.

168

Yang, Y.; Lun, Z. Y.; Xia, G. L.; Zheng, F. C.; He, M. N.; Chen, Q. W. Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy Environ. Sci. 2015, 8, 3563–3571.

169

Yang, G.; Liu, J. J.; Zhou, M.; Bai, J.; Bo, X. J. Fast and facile room-temperature synthesis of MOF-derived Co nanoparticle/nitrogen-doped porous graphene in air atmosphere for overall water splitting. ACS Sustainable Chem. Eng. 2020, 8, 11947–11955.

170

Hu, L.; Chen, Q. W. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Nanoscale 2014, 6, 1236–1257.

171

Xu, Y. W.; Xu, L. Q.; Li, Q. P.; Su, K. Z.; Hu, Y.; Miao, T. T.; Qian, J. J. Metal-organic framework-impregnated calixarene-based cluster-derived hierarchically porous bimetallic phosphide nanocomposites for efficient water splitting. Energy Technol. 2020, 8, 2000059.

172

Zhang, W. X.; Yu, Y.; Huang, R. T.; Shi, X. Y. Efficient photocatalytic reduction of CO2 to CO using NiFe2O4@N/C/SnO2 derived from FeNi metal-organic framework. ACS Appl. Mater. Interfaces 2021, 13, 40571–40581.

173

Zhou, Y.; Tang, B.; Wang, S. K.; Long, J. L. Cu-MOF@Co-MOF derived Co-Cu alloy nanoparticles and N atoms co-doped carbon matrix as efficient catalyst for enhanced oxygen reduction. Int. J. Hydrogen Energy 2020, 45, 15785–15795.

174

Kim, K.; Lopez, K. J.; Sun, H. J.; An, J. C.; Park, G.; Shim, J. Electrochemical performance of bifunctional Co/graphitic carbon catalysts prepared from metal-organic frameworks for oxygen reduction and evolution reactions in alkaline solution. J. Appl. Electrochem. 2018, 48, 1231–1241.

175

Athar, M.; Rzepka, P.; Thoeny, D.; Ranocchiari, M.; van Bokhoven, J. A. Thermal degradation of defective high-surface-area UiO-66 in different gaseous environments. RSC Adv. 2021, 11, 38849–38855.

176

Xu, G. D.; Zuo, Y. X.; Huang, B. Metal-organic framework-74-Ni/carbon nanotube composite as sulfur host for high performance lithium-sulfur batteries. J. Electroanal. Chem. 2018, 830−831, 43–49.

177

Zhang, Y. F.; Bo, X. J.; Nsabimana, A.; Han, C.; Li, M.; Guo, L. P. Electrocatalytically active cobalt-based metal-organic framework with incorporated macroporous carbon composite for electrochemical applications. J. Mater. Chem. A 2015, 3, 732–738.

178

Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. Int. J. Environ. Res. Public Health 2020, 17, 2204.

179

Saleh, H. N.; Panahande, M.; Yousefi, M.; Asghari, F. B.; Conti, G. O.; Talaee, E.; Mohammadi, A. A. Carcinogenic and non-carcinogenic risk assessment of heavy metals in groundwater wells in neyshabur plain, Iran. Biol. Trace Elem. Res. 2019, 190, 251–261.

180

Carolin, C. F.; Kumar, P. S.; Saravanan, A.; Joshiba, G. J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799.

181

Yang, J.; Guo, J.; Guo, X. W.; Chen, L. S. In-situ growth carbon nanotubes deriving from a new metal-organic framework for high-performance all-solid-state supercapacitors. Mater. Lett. 2019, 236, 739–742.

182

Liu, C.; Wang, P.; Liu, X. K.; Yi, X. T.; Liu, D. H.; Zhou, Z. Q. Ultrafast removal of cadmium(II) by green cyclodextrin metal-organic-framework-based nanoporous carbon: Adsorption mechanism and application. Chem. Asian J. 2019, 14, 261–268.

183

Bakhtiari, N.; Azizian, S.; Alshehri, S. M.; Torad, N. L.; Malgras, V.; Yamauchi, Y. Study on adsorption of copper ion from aqueous solution by MOF-derived nanoporous carbon. Microporous Mesoporous Mater. 2015, 217, 173–177.

184

Lai, Y. X.; Wang, F.; Zhang, Y. M.; Ou, P.; Wu, P. P.; Fang, Q. L.; Chen, Z.; Li, S. UiO-66 derived N-doped carbon nanoparticles coated by PANI for simultaneous adsorption and reduction of hexavalent chromium from waste water. Chem. Eng. J. 2019, 378, 122069.

185

Fang, Y.; Wen, J.; Zhang, H. B.; Wang, Q.; Hu, X. H. Enhancing Cr(VI) reduction and immobilization by magnetic core–shell structured NZVI@MOF derivative hybrids. Environ. Pollut. 2020, 260, 114021.

186

Gao, G.; Nie, L. J.; Yang, S. J.; Jin, P. K.; Chen, R. Z.; Ding, D. H.; Wang, X. C.; Wang, W. D.; Wu, K.; Zhang, Q. H. Well-defined strategy for development of adsorbent using metal organic frameworks (MOF) template for high performance removal of hexavalent chromium. Appl. Surf. Sci. 2018, 457, 1208–1217.

187

Hasan, Z.; Cho, J.; Rinklebe, J.; Ok, Y. S.; Cho, D. W.; Song, H. Metal organic framework derived Cu-carbon composite: An efficient non-noble metal catalyst for reduction of hexavalent chromium and pendimethalin. J. Ind. Eng. Chem. 2017, 52, 331–337.

188

Ren, X. M.; Chen, C. L.; Nagatsu, M.; Wang, X. K. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem. Eng. J. 2011, 170, 395–410.

189

Bai, Z. Q.; Yuan, L. Y.; Zhu, L.; Liu, Z. R.; Chu, S. Q.; Zheng, L. R.; Zhang, J.; Chai, Z. F.; Shi, W. Q. Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption. J. Mater. Chem. A 2015, 3, 525–534.

190

Lingamdinne, L. P.; Koduru, J. R.; Karri, R. R. A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. J. Environ. Manage. 2019, 231, 622–634.

191

Lv, Z. M.; Wang, H. Y.; Chen, C. L.; Yang, S. M.; Chen, L.; Alsaedi, A.; Hayat, T. Enhanced removal of uranium(VI) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent. J. Colloid Interf. Sci. 2019, 537, A1–A10.

192

He, X.; Wu, M.; Ao, Z. M.; Lai, B.; Zhou, Y. B.; An, T. C.; Wang, S. B. Metal-organic frameworks derived C/TiO2 for visible light photocatalysis: Simple synthesis and contribution of carbon species. J. Hazard. Mater. 2021, 403, 124048.

193

Bhadra, B. N.; Song, J. Y.; Lee, S. K.; Hwang, Y. K.; Jhung, S. H. Adsorptive removal of aromatic hydrocarbons from water over metal azolate framework-6-derived carbons. J. Hazard. Mater. 2018, 344, 1069–1077.

194

Huang, P. F.; Lei, J. W.; Sun, Z. R.; Hu, X. Fabrication of MOF-derivated CuOx-C electrode for electrochemical degradation of ceftazidime from aqueous solution. Chemosphere 2021, 268, 129157.

195

Wang, C. P.; Yin, H.; Tian, P. J.; Sun, X. J.; Pan, X. Y.; Chen, K. F.; Chen, W. J.; Wu, Q. H.; Luo, S. Y. Remarkable adsorption performance of MOF-199 derived porous carbons for benzene vapor. Environ. Res. 2020, 184, 109323.

196

Bhadra, B. N.; Jhung, S. H. A remarkable adsorbent for removal of contaminants of emerging concern from water: Porous carbon derived from metal azolate framework-6. J. Hazard. Mater. 2017, 340, 179–188.

197

Li, Z. H.; Yuan, Y.; Wu, H.; Li, X. H.; Yuan, M. L.; Wang, H. Z.; Wu, X. X.; Liu, S.; Zheng, X. M.; Kim, M. et al. Investigation of MOF-derived humidity-proof hierarchical porous carbon frameworks as highly-selective toluene absorbents and sensing materials. J. Hazard. Mater. 2021, 411, 125034.

198

Ahmed, I.; Panja, T.; Khan, N. A.; Sarker, M.; Yu, J. S.; Jhung, S. H. Nitrogen-doped porous carbons from ionic liquids@MOF: Remarkable adsorbents for both aqueous and nonaqueous media. ACS Appl. Mater. Interfaces 2017, 9, 10276–10285.

199

Zhu, Y. G.; Zhao, Y.; Li, B.; Huang, C. L.; Zhang, S. Y.; Yu, S.; Chen, Y. S.; Zhang, T.; Gillings, M. R.; Su, J. Q. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2017, 2, 16270.

200

Bhadra, B. N.; Jhung, S. H. Adsorptive removal of wide range of pharmaceuticals and personal care products from water using bio-MOF-1 derived porous carbon. Microporous Mesoporous Mater. 2018, 270, 102–108.

201

Brodin, T.; Piovano, S.; Fick, J.; Klaminder, J.; Heynen, M.; Jonsson, M. Ecological effects of pharmaceuticals in aquatic systems-impacts through behavioural alterations. Philos. Trans. Roy. Soc. B:Biol. Sci. 2014, 369, 20130580.

202

Basheer, A. A. New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 2018, 261, 583–593.

203

Lin, K. Y. A.; Chang, H. A.; Chen, R. C. MOF-derived magnetic carbonaceous nanocomposite as a heterogeneous catalyst to activate oxone for decolorization of rhodamine B in water. Chemosphere 2015, 130, 66–72.

204

Chen, D. Z.; Wang, S. J.; Zhang, Z. M.; Quan, H. Y.; Wang, Y. C.; Jiang, Y. J.; Hurlock, M. J.; Zhang, Q. Molten NaCl-induced MOF-derived carbon-polyhedron decorated carbon-nanosheet with high defects and high N-doping for boosting the removal of carbamazepine from water. Environ. Sci. :Nano 2020, 7, 1205–1213.

205

Zhang, C. Y.; He, D.; Ma, J. X.; Tang, W. W.; Waite, T. D. Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: A review. Water Res. 2018, 128, 314–330.

206

Phuoc, N. M.; Jung, E.; Tran, N. A. T.; Lee, Y. W.; Yoo, C. Y.; Kang, B. G.; Cho, Y. Enhanced desalination performance of capacitive deionization using nanoporous carbon derived from ZIF-67 metal organic frameworks and CNTs. Nanomaterials 2020, 10, 2091.

207

Wang, K.; Liu, Y.; Ding, Z. B.; Li, Y. Q.; Lu, T.; Pan, L. K. Metal-organic-frameworks-derived NaTi2(PO4)3/carbon composites for efficient hybrid capacitive deionization. J. Mater. Chem. A 2019, 7, 12126–12133.

208

Ding, M.; Fan, S.; Huang, S. Z.; Pam, M. E.; Guo, L.; Shi, Y. M.; Yang, H. Y. Tunable pseudocapacitive behavior in metal-organic framework-derived TiO2@porous carbon enabling high-performance membrane capacitive deionization. ACS Appl. Energy Mater. 2019, 2, 1812–1822.

209

Gao, T.; Zhou, F.; Ma, W.; Li, H. B. Metal-organic-framework derived carbon polyhedron and carbon nanotube hybrids as electrode for electrochemical supercapacitor and capacitive deionization. Electrochim. Acta 2018, 263, 85–93.

210

Liu, Y.; Xu, X. T.; Wang, M.; Lu, T.; Sun, Z.; Pan, L. K. Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Chem. Commun. 2015, 51, 12020–12023.

211

Duan, X. Y.; Liu, W.; Chang, L. M. Porous carbon prepared by using ZIF-8 as precursor for capacitive deionization. J. Taiwan Inst. Chem. Eng. 2016, 62, 132–139.

212

Li, C. P.; Wu, Y. Q.; Zhang, F. Y.; Gao, L. X.; Zhang, D. Q.; An, Z. X. Capacitive deionization of NaCl solution with hierarchical porous carbon materials derived from Mg-MOFs. Sep. Purif. Technol. 2021, 277, 119618.

213

Hussain, T.; Nie, P. F.; Hu, B.; Shang, X. H.; Yang, J. M.; Liu, J. Y. Facile synthesis of Mg-formate MOF-derived mesoporous carbon for fast capacitive deionization. J. Mater. Sci. 2021, 56, 10282–10292.

214

Zong, M. Z.; Huo, S. L.; Liu, Y.; Zhang, X. L.; Li, K. X. Hydrangea-like nitrogen-doped porous carbons derived from NH2-MIL-53(Al) for high-performance capacitive deionization. Sep. Purif. Technol. 2021, 256, 117818.

215

Shen, J. M.; Li, Y.; Wang, C. H.; Luo, R.; Li, J. S.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J. Hollow ZIFs-derived nanoporous carbon for efficient capacitive deionization. Electrochim. Acta 2018, 273, 34–42.

216

Xu, X. T.; Li, J. L.; Wang, M.; Liu, Y.; Lu, T.; Pan, L. K. Shuttle-like porous carbon rods from carbonized metal-organic frameworks for high-performance capacitive deionization. ChemElectroChem 2016, 3, 993–998.

217

Gao, T.; Li, H. B.; Zhou, F.; Gao, M. M.; Liang, S.; Luo, M. Mesoporous carbon derived from ZIF-8 for high efficient electrosorption. Desalination 2019, 451, 133–138.

218

Li, H. B.; Pan, L. K.; Nie, C. Y.; Liu, Y.; Sun, Z. Reduced graphene oxide and activated carbon composites for capacitive deionization. J. Mater. Chem. 2012, 22, 15556–15561.

219

Kurak, K. A.; Anderson, A. B. Nitrogen-treated graphite and oxygen electroreduction on pyridinic edge sites. J. Phys. Chem. C 2009, 113, 6730–6734.

220

Mondol, M. H.; Jhung, S. H. Adsorptive removal of pesticides from water with metal-organic framework-based materials. Chem. Eng. J. 2021, 421, 129688.

221

Ahmed, I.; Bhadra, B. N.; Lee, H. J.; Jhung, S. H. Metal-organic framework-derived carbons: Preparation from ZIF-8 and application in the adsorptive removal of sulfamethoxazole from water. Catal. Today 2018, 301, 90–97.

222

Liu, R. T.; Chi, L. N.; Feng, J. M.; Wang, X. Z. MOFs-derived conductive structure for high-performance removal/release of phosphate as electrode material. Water Res. 2020, 184, 116198.

223

Sarker, M.; Ahmed, I.; Jhung, S. H. Adsorptive removal of herbicides from water over nitrogen-doped carbon obtained from ionic liquid@ZIF-8. Chem. Eng. J. 2017, 323, 203–211.

224

Cao, S.; Chen, T. T.; Zheng, S. S.; Bai, Y.; Pang, H. High-performance capacitive deionization and killing microorganism in surface-water by ZIF-9 derived carbon composites. Small Methods 2021, 5, 2101070.

225

Zhu, Z. H.; Wang, Z. B.; Yan, Z. B.; Zhou, R. Q.; Wang, Z. P.; Chen, C. N. Facile synthesis of MOF-derived porous spinel zinc manganese oxide/carbon nanorods hybrid materials for supercapacitor application. Ceram. Int. 2018, 44, 20163–20169.

226

Li, X. Y.; Yin, Z.; Ma, W. M.; Wang, C.; Yu, Y. N.; Cheng, Y. Aperiodic chemical sequence in a rod-spacer metal-organic framework from linear tetrazole-benzene-carboxylate linker. Inorg. Chem. Commun. 2020, 116, 107925.

227

Lin, Y. F.; Chen, G.; Wan, H.; Chen, F. S.; Liu, X. H.; Ma, R. Z. 2D Free-standing nitrogen-doped Ni-Ni3S2@carbon nanoplates derived from metal-organic frameworks for enhanced oxygen evolution reaction. Small 2019, 15, 1900348.

228

Hwang, J.; Yan, R. Y.; Oschatz, M.; Schmidt, B. V. K. J. Solvent mediated morphology control of zinc MOFs as carbon templates for application in supercapacitors. J. Mater. Chem. A 2018, 6, 23521–23530.

229

Jin, W. W.; Li, H. J.; Zou, J. Z.; Inguva, S.; Zhang, Q.; Zeng, S. Z.; Xu, G. Z.; Zeng, X. R. 2D ultrathin carbon nanosheets derived from interconnected Al-MOF as excellent hosts to anchor selenium for Li-Se battery. Mater. Lett. 2019, 252, 211–214.

230

Banerjee, A.; Upadhyay, K. K.; Puthusseri, D.; Aravindan, V.; Madhavi, S.; Ogale, S. MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs). Nanoscale 2014, 6, 4387–4394.

231

Wang, R. T.; Jin, D. D.; Zhang, Y. B.; Wang, S. J.; Lang, J. W.; Yan, X. B.; Zhang, L. Engineering metal organic framework derived 3D nanostructures for high performance hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 292–302.

232

Amali, A. J.; Hoshino, H.; Wu, C.; Ando, M.; Xu, Q. From metal-organic framework to intrinsically fluorescent carbon nanodots. Chem.—Eur. J. 2014, 20, 8279–8282.

233

Wang, C. H.; Kaneti, Y. V.; Bando, Y.; Lin, J. J.; Liu, C.; Li, J. S.; Yamauchi, Y. Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater. Horiz. 2018, 5, 394–407.

234

Hu, W. H.; Zheng, M. B.; Xu, B. Y.; Wei, Y.; Zhu, W.; Li, Q.; Pang, H. Design of hollow carbon-based materials derived from metal-organic frameworks for electrocatalysis and electrochemical energy storage. J. Mater. Chem. A 2021, 9, 3880–3917.

235

Mukhiya, T.; Muthurasu, A.; Tiwari, A. P.; Chhetri, K.; Chae, S. H.; Kim, H.; Dahal, B.; Lee, B. M.; Kim, H. Y. Integrating the essence of a metal-organic framework with electrospinning: A new approach for making a metal nanoparticle confined N-doped carbon nanotubes/porous carbon nanofibrous membrane for energy storage and conversion. ACS Appl. Mater. Interfaces 2021, 13, 23732–23742.

236

Tang, R.; Zhou, S. J.; Zhang, L. Y.; Yin, L. W. Metal-organic framework derived narrow bandgap cobalt carbide sensitized titanium dioxide nanocage for superior photo-electrochemical water oxidation performance. Adv. Funct. Mater. 2018, 28, 1706154.

237

Hu, X. J.; Liu, X. J.; Chen, K.; Wang, G.; Wang, H. Core–shell MOF-derived N-doped yolk–shell carbon nanocages homogenously filled with ZnSe and CoSe2 nanodots as excellent anode materials for lithium- and sodium-ion batteries. J. Mater. Chem. A 2019, 7, 11016–11037.

Nano Research
Pages 6793-6818
Cite this article:
Ding J, Tang Y, Zheng S, et al. The synthesis of MOF derived carbon and its application in water treatment. Nano Research, 2022, 15(8): 6793-6818. https://doi.org/10.1007/s12274-022-4327-1
Topics:

1642

Views

56

Crossref

57

Web of Science

57

Scopus

0

CSCD

Altmetrics

Received: 20 January 2022
Revised: 12 March 2022
Accepted: 14 March 2022
Published: 09 June 2022
© Tsinghua University Press 2022
Return