Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The rational modification of perovskite oxides (ABO3−δ) is essential to improve the efficiency and stability of oxygen electrolysis. Surface engineering represents a facile approach to modify perovskites for enhanced performance. Through compositional design and in situ exsolution, a Ru-doped (La0.8Sr0.2)0.9Co0.1Fe0.8Ru0.1O3−δ (LSCFR) perovskite anchored with CoFe(Ru) alloy particles on the surface was fabricated for oxygen evolution reaction (OER) in this work. Experimental results and calculations indicate that Ru-doping promotes the exsolution of CoFe(Ru) from the perovskite parent. Upon exsolution in the reduced atmosphere for 3 h, the catalyst (LSCFR-3) exhibited superior OER performance with an overpotential of 347 mV and a Tafel slope of 54.65 mV·dec−1, and showed good stability in contrast to the pristine LSCFR. The exsolution of CoFe(Ru) particles, Ru doping, and the increase of surface oxygen vacancies are responsible for the enhancement of OER performance. The findings obtained in this study highlight the possibility of controlling exsolution and composition of nanoparticles by element doping and prove that in situ exsolution is an effective strategy for designing OER catalysts.
Sunarso, J.; Baumann, S.; Serra, J. M.; Meulenberg, W. A.; Liu, S.; Lin, Y. S.; Da Costa, J. C. D. Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Membr. Sci. 2008, 320, 13–41.
Zhang, C.; Sunarso, J.; Liu, S. M. Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: Guidelines, recent advances, and forward directions. Chem. Soc. Rev. 2017, 46, 2941–3005.
Wang, W.; Su, C.; Wu, Y. Z.; Ran, R.; Shao, Z. P. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem. Rev. 2013, 113, 8104–8151.
Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.
Wang, W.; Xu, M. G.; Xu, X. M.; Zhou, W.; Shao, Z. P. Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2020, 59, 136–152.
Yan, Z. H.; Sun, H. M.; Chen, X.; Fu, X. R.; Chen, C. C.; Cheng, F. Y.; Chen, J. Rapid low-temperature synthesis of perovskite/carbon nanocomposites as superior electrocatalysts for oxygen reduction in Zn-air batteries. Nano Res. 2018, 11, 3282–3293.
Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.
Sun, C. W.; Alonso, J. A.; Bian, J. J. Recent advances in perovskite-type oxides for energy conversion and storage applications. Adv. Energy Mater. 2020, 11, 2000459.
Wu, J. C.; Guo, Y. Q.; Liu, H. F.; Zhao, J. Y.; Zhou, H. D.; Chu, W. S.; Wu, C. Z. Room-temperature ligancy engineering of perovskite electrocatalyst for enhanced electrochemical water oxidation. Nano Res. 2019, 12, 2296–2301.
Song, S. Z.; Zhou, J.; Zhang, S.; Zhang, L. J.; Li, J.; Wang, Y.; Han, L.; Long, Y. W.; Hu, Z. W.; Wang, J. Q. Molten-salt synthesis of porous La0.6Sr0.4Co0.2Fe0.8O2.9 perovskite as an efficient electrocatalyst for oxygen evolution. Nano Res. 2018, 11, 4796–4805.
Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 2015, 8, 1404–1427.
Beall, C. E.; Fabbri, E.; Schmidt, T. J. Perovskite oxide based electrodes for the oxygen reduction and evolution reactions: The underlying mechanism. ACS Catal. 2021, 11, 3094–3114.
Dai, Y. W.; Yu, J.; Cheng, C.; Tan, P.; Ni, M. Mini-review of perovskite oxides as oxygen electrocatalysts for rechargeable zinc-air batteries. Chem. Eng. J. 2020, 397, 125516.
Zhu, Y. L.; Zhou, W.; Sunarso, J.; Zhong, Y. J.; Shao, Z. P. Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution. Adv. Funct. Mater. 2016, 26, 5862–5872.
Yuan, R. H.; He, Y.; He, W.; Ni, M.; Leung, M. K. H. Bifunctional electrocatalytic activity of La0.8Sr0.2MnO3-based perovskite with the A-site deficiency for oxygen reduction and evolution reactions in alkaline media. Appl. Energy 2019, 251, 113406.
Duan, Y.; Sun, S. N.; Xi, S. B.; Ren, X.; Zhou, Y.; Zhang, G. L.; Yang, H. T.; Du, Y. H.; Xu, Z. J. Tailoring the Co 3d–O 2p covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction. Chem. Mater. 2017, 29, 10534–10541.
Wang, M. Y.; Han, B. H.; Deng, J. J.; Jiang, Y.; Zhou, M. Y.; Lucero, M.; Wang, Y.; Chen, Y. B.; Yang, Z. Z.; N'Diaye, A. T. et al. Influence of Fe substitution into LaCoO3 electrocatalysts on oxygen-reduction activity. ACS Appl. Mater. Interfaces 2019, 11, 5682–5686.
Zhu, K. Y.; Shi, F.; Zhu, X. F.; Yang, W. S. The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano Energy 2020, 73, 104761.
Lee, H.; Gwon, O.; Choi, K.; Zhang, L. J.; Zhou, J.; Park, J.; Yoo, J. W.; Wang, J. Q.; Lee, J. H.; Kim, G. Enhancing bifunctional electrocatalytic activities via metal d-band center lift induced by oxygen vacancy on the subsurface of perovskites. ACS Catal. 2020, 10, 4664–4670.
Zhang, R. H.; Dubouis, N.; Ben Osman, M.; Yin, W.; Sougrati, M. T.; Corte, D. A. D.; Giaume, D.; Grimaud, A. A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media. Angew. Chem., Int. Ed. 2019, 58, 4571–4575.
Lv, H. F.; Liu, T. F.; Zhang, X. M.; Song, Y. F.; Matsumoto, H.; Ta, N.; Zeng, C. B.; Wang, G. X.; Bao, X. H. Atomic-scale insight into exsolution of CoFe alloy nanoparticles in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3−δ with efficient CO2 electrolysis. Angew. Chem., Int. Ed. 2020, 59, 15968–15973.
Myung, J. H.; Neagu, D.; Miller, D. N.; Irvine, J. T. S. Switching on electrocatalytic activity in solid oxide cells. Nature 2016, 537, 528–531.
Calì, E.; Kerherve, G.; Naufal, F.; Kousi, K.; Neagu, D.; Papaioannou, E. I.; Thomas, M. P.; Guiton, B. S.; Metcalfe, I. S.; Irvine, J. T. S. et al. Exsolution of catalytically active iridium nanoparticles from strontium titanate. ACS Appl. Mater. Interfaces 2020, 12, 37444–37453.
Lee, J. G.; Myung, J. H.; Naden, A. B.; Jeon, O. S.; Shul, Y. G.; Irvine, J. T. S. Replacement of Ca by Ni in a perovskite titanate to yield a novel perovskite exsolution architecture for oxygen-evolution reactions. Adv. Energy Mater. 2020, 10, 1903693.
Jiang, Y. L.; Geng, Z. B.; Sun, Y.; Wang, X. Y.; Huang, K.; Cong, Y. G.; Shi, F. B.; Wang, Y.; Zhang, W.; Feng, S. H. Highly efficient B-Site exsolution assisted by Co doping in lanthanum ferrite toward high-performance electrocatalysts for oxygen evolution and oxygen reduction. ACS Sustainable Chem. Eng. 2020, 8, 302–310.
Fu, L.; Zhou, J.; Zhou, L. K.; Yang, J. M.; Liu, Z. R.; Wu, K.; Zhao, H. F.; Wang, J. K.; Wu, K. Facile fabrication of exsolved nanoparticle-decorated hollow ferrite fibers as active electrocatalyst for oxygen evolution reaction. Chem. Eng. J. 2021, 418, 129422.
Neagu, D.; Tsekouras, G.; Miller, D. N.; Ménard, H.; Irvine, J. T. S. In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem. 2013, 5, 916–923.
Lv, H. F.; Lin, L.; Zhang, X. M.; Song, Y. F.; Matsumoto, H.; Zeng, C. B.; Ta, N.; Liu, W.; Gao, D. F.; Wang, G. X. et al. In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a Co-doped Sr2Fe1.5Mo0.5O6−δ cathode for CO2 electrolysis. Adv. Mater. 2020, 32, 1906193.
Kwon, O.; Sengodan, S.; Kim, K.; Kim, G.; Jeong, H. Y.; Shin, J.; Ju, Y. W.; Han, J. W.; Kim, G. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nat. Commun. 2017, 8, 15967.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Shannon, R. D.; Prewitt, C. T. Effective ionic radii in oxides and fluorides. Acta Crystallogr., Sect. B 1969, 25, 925–946.
Kwon, O.; Joo, S.; Choi, S.; Sengodan, S.; Kim, G. Review on exsolution and its driving forces in perovskites. J. Phys. :Energy 2020, 2, 032001.
Islam, Q. A.; Paydar, S.; Akbar, N.; Zhu, B.; Wu, Y. Nanoparticle exsolution in perovskite oxide and its sustainable electrochemical energy systems. J. Power Sources 2021, 492, 229626.
Park, S.; Han, H.; Choi, J.; Lee, S.; Park, M.; Kim, W. B. Ruddlesden-Popper oxide (La0.6Sr0.4)2(Co,Fe)O4 with exsolved CoFe nanoparticles for a solid oxide fuel cell anode catalyst. Energy Technol. 2021, 9, 2100116.
Ying, Y.; Fan, J. Y.; Pi, L.; Qu, Z.; Wang, W. Q.; Hong, B.; Tan, S.; Zhang, Y. H. Effect of Ru doping in La0.5Sr0.5MnO3 and La0.45Sr0.55MnO3. Phys. Rev. B 2006, 74, 144433.
Wang, X. Y.; Peng, X. B.; Ran, H. Y.; Lin, B. Y.; Ni, J.; Lin, J. X.; Jiang, L. L. Influence of Ru substitution on the properties of LaCoO3 catalysts for ammonia synthesis: XAFS and XPS studies. Ind. Eng. Chem. Res. 2018, 57, 17375–17383.
Sun, Y. F.; Zhang, Y. Q.; Chen, J.; Li, J. H.; Zhu, Y. T.; Zeng, Y. M.; Amirkhiz, B. S.; Li, J.; Hua, B.; Luo, J. L. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent. Nano Lett. 2016, 16, 5303–5309.
Li, Z. S.; Lv, L.; Wang, J. S.; Ao, X.; Ruan, Y. J.; Zha, D. C.; Hong, G.; Wu, Q. H.; Lan, Y. C.; Wang, C. D. et al. Engineering phosphorus-doped LaFeO3−δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy 2018, 47, 199–209.
Pan, Y. L.; Xu, X. M.; Zhong, Y. J.; Ge, L.; Chen, Y. B.; Veder, J. P. M.; Guan, D. Q.; O'Hayre, R.; Li, M. R.; Wang, G. X. et al. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 2020, 11, 2002.
Liang, Y.; Ye, D. D.; Han, N.; Liang, P.; Wang, J. Q.; Yang, G. J.; Zhang, C. K.; He, X.; Chen, M.; Zhang, C. Nanoporous silver-modified LaCoO3−δ perovskite for oxygen reduction reaction. Electrochim. Acta 2021, 391, 138908.
Jiang, Y. L.; Geng, Z. B.; Yuan, L.; Sun, Y.; Cong, Y. G.; Huang, K. K.; Wang, L.; Zhang, W. Nanoscale architecture of RuO2/La0.9Fe0.92Ru0.08−xO3−δ composite via manipulating the exsolution of low Ru-substituted A-site deficient perovskite. ACS Sustainable Chem. Eng. 2018, 6, 11999–12005.
Gui, L. Q.; Wang, Z. B.; Zhang, K.; He, B. B.; Liu, Y. Z.; Zhou, W.; Xu, J. M.; Wang, Q.; Zhao, L. Oxygen vacancies-rich Ce0.9Gd0.1O2−δ decorated Pr0.5Ba0.5CoO3−δ bifunctional catalyst for efficient and long-lasting rechargeable Zn-air batteries. Appl. Catal. B:Environ. 2020, 266, 118656.
Joo, S.; Kwon, O.; Kim, K.; Kim, S.; Kim, H.; Shin, J.; Jeong, H. Y.; Sengodan, S.; Han, J. W.; Kim, G. Cation-swapped homogeneous nanoparticles in perovskite oxides for high power density. Nat. Commun. 2019, 10, 697.
Dong, C. L.; Zhang, X. L.; Xu, J.; Si, R.; Sheng, J.; Luo, J.; Zhang, S. N.; Dong, W. J.; Li, G. B.; Wang, W. C. et al. Ruthenium-doped cobalt-chromium layered double hydroxides for enhancing oxygen evolution through regulating charge transfer. Small 2020, 16, 1905328.
Ma, J. J.; Geng, Z. B.; Jiang, Y. L.; Hou, X. Y.; Ge, X.; Wang, Z. Z.; Huang, K. K.; Zhang, W.; Feng, S. H. Exsolution manipulated local surface cobalt/iron alloying and dealloying conversion in La0.95Fe0.8Co0.2O3 perovskite for oxygen evolution reaction. J. Alloys Compd. 2021, 854, 157154.
Gui, L. Q.; Pan, G. H.; Ma, X.; You, M. S.; He, B. B.; Yang, Z. H.; Sun, J.; Zhou, W.; Xu, J. M.; Zhao, L. In-situ exsolution of CoNi alloy nanoparticles on LiFe0.8Co0.1Ni0.1O2 parent: New opportunity for boosting oxygen evolution and reduction reaction. Appl. Surf. Sci. 2021, 543, 148817.
Wu, Z. X.; Li, P.; Qin, Q.; Li, Z. J.; Liu, X. E. N-doped graphene combined with alloys (NiCo, CoFe) and their oxides as multifunctional electrocatalysts for oxygen and hydrogen electrode reactions. Carbon 2018, 139, 35–44.
Wang, Y.; Hu, T. J.; Qiao, Y. T.; Chen, Y. Synergistic engineering of defects and architecture in CoFe@NC toward highly efficient oxygen electrode reactions. Int. J. Hydrogen Energy 2020, 45, 8686–8694.
Shi, F.; Zhu, K. Y.; Li, X. K.; Wang, E. D.; Zhu, X. F.; Yang, W. S. Porous carbon layers wrapped CoFe alloy for ultrastable Zn-Air batteries exceeding 20,000 charging-discharging cycles. J. Energy Chem. 2021, 61, 327–335.
Samanta, A.; Raj, C. R. Catalyst support in oxygen electrocatalysis: A case study with CoFe alloy electrocatalyst. J. Phys. Chem. C 2018, 122, 15843–15852.