AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p–n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling

Haiyang Wang1,§Ranran Niu1,§Jianhui Liu1Sheng Guo2( )Yongpeng Yang1Zhongyi Liu1Jun Li1( )
Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China

§ Haiyang Wang and Ranran Niu contributed equally to this work.

Show Author Information

Graphical Abstract

An 2D/2D p–n heterojunction was successfully synthesized by self-assembled strategy for efficient photocatalytic H2 generation. This work demonstrates a high-efficient p–n heterojunction photocatalyst with II-scheme charge migration pathway and paves the way to design highly active p–n junction photocatalysts for H2 generation.

Abstract

Two-dimensional (2D) semiconductor heterojunctions are considered as an effective strategy to achieve fast separation of photoinduced carriers. Herein, a novel CoWO4/g-C3N4 (CWO/CN) p–n junction was synthesized using an electrostatic self-assembly method. The constructed 2D/2D p–n heterostructure had a rich hetero-interface, increased charge density, and fast separation efficiency of photoinduced carriers. The in-situ Kelvin probe force microscopy confirmed that the separation pathway of photoinduced carriers through the interface obeyed an II-scheme charge transfer mechanism. Experimental results and density functional theory calculations indicated the differences of work function between CWO and CN induced the generation of built-in electric field, ensuring an efficient separation and transfer process of photoinduced carriers. Under the optimized conditions, the CWO/CN heterojunction displayed enhanced photocatalytic H2 generation activity under full spectrum and visible lights irradiation, respectively. Our study provides a novel approach to design 2D/2D hetero-structured photocatalysts based on p–n type semiconductor for photocatalytic H2 generation.

Electronic Supplementary Material

Download File(s)
12274_2022_4329_MOESM1_ESM.pdf (1 MB)

References

1

Cai, H. R.; Wang, B.; Xiong, L, F.; Bi, J. L.; Hao, H. J.; Yu, X. J.; Li, C.; Liu, J. M.; Yang, S. C. Boosting photocatalytic hydrogen evolution of g-C3N4 catalyst via lowering the Fermi level of co-catalyst. Nano Res. 2022, 15, 1128–1134.

2

Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.

3

Wang, L. X.; Zhang, J. J.; Zhang, Y.; Yu, H. G.; Qu, Y. H.; Yu, J. G. Inorganic metal-oxide photocatalyst for H2O2 production. Small 2021, 18, 2104561.

4

Jian, S. J.; Tian, Z. W.; Hu, J. P.; Zhang, K. Y.; Zhang, L.; Duan, G. G.; Yang, W. S.; Jiang. S. H. Enhanced visible light photocatalytic efficiency of La-doped ZnO nanofibers via electrospinning-calcination technology. Adv. Powder Mater. 2022, 1, 100004.

5

Tong, X. J.; Cao, X.; Han, T.; Cheong, W. C.; Lin, R.; Chen, Z.; Wang, D. S.; Chen, C.; Peng, Q.; Li, Y. D. Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Res. 2019, 12, 1625–1630.

6

Zulfiqar, S.; Liu, S.; Rahman, N.; Tang, H.; Shah, S.; Yu, X. H.; Liu, Q. Q. Construction of S-scheme MnO2@CdS heterojunction with core-shell structure as H2-production photocatalyst. Rare Met. 2021, 40, 2381–2391.

7

Liu, Y. J.; Zhu, Q. H.; Tayyab, M.; Zhou, L.; Lei, J. Y.; Zhang, J. L. Single-atom Pt loaded Zinc vacancies ZnO-ZnS induced type-V electron transport for efficiency photocatalytic H2 evolution. Solar RRL 2021, 5, 2100536.

8

Gong, Y. N.; Shao, B. Z.; Mei, J. H.; Yang, W.; Zhong, D. C.; Lu, T. B. Facile synthesis of C3N4-supported metal catalysts for efficient CO2 photoreduction. Nano Res. 2022, 15, 551–556.

9

Aggarwal, M.; Basu, S.; Shetti, N. P.; Nadagouda, M. N.; Kwon, E. E.; Park, Y. K.; Aminabhavi, T. M. Photocatalytic carbon dioxide reduction: Exploring the role of ultrathin 2D graphitic carbon nitride (g-C3N4). Chem. Eng. J. 2021, 425, 131402.

10

Shen, J. X.; Li, Y. Z.; Zhao, H. Y.; Pan, K.; Li, X.; Qu, Y.; Wang, G. F.; Wang, D. S. Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res. 2019, 12, 1931–1936.

11

Xing, M. Y.; Xu, W. J.; Dong, C. C.; Bai, Y. C.; Zeng, J. B.; Zhou, Y.; Zhang, J. L.; Yin, Y. D. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 2018, 4, 1359–1372.

12

Liu, J.; Guo, S.; Wu, H. Z.; Zhang, X. L.; Li, J.; Zhou, K. Synergetic effects of Bi5+ and oxygen vacancies in Bismuth(V)-rich Bi4O7 nanosheets for enhanced near-infrared light driven photocatalysis. J. Mater. Sci. Technol. 2021, 85, 1–10.

13

Wang, H.; Jiang, S. L.; Shao, W.; Zhang, X. D.; Chen, S. C.; Sun, X. S.; Zhang, Q.; Luo, Y.; Xie, Y. Optically switchable photocatalysis in ultrathin black phosphorus nanosheets. J. Am. Chem. Soc. 2018, 140, 3474–3480.

14

Xiao, X. D.; Lin, S. Y.; Zhang, L. P.; Meng, H. Y.; Zhou, J.; Li, Q.; Liu, J. N.; Qiao, P. Z.; Jiang, B. J. Constructing Pd−N interactions in Pd/g-C3N4 to improve the charge dynamics for efficient photocatalytic hydrogen evolution. Nano Res. 2022, 15, 2928–2934.

15
Xiao, M.; Jiao, Y. L.; Luo, B.; Wang, S. C.; Chen, P.; Lyu, M. Q.; Du, A. J.; Wang, L. Z. Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution. Nano Res., in press, DOI: 10.1007/s12274-021-3897-7.
16

Wang, K.; Jiang, L. S.; Wu, X. Y.; Zhang, G. K. Vacancy mediated Z-scheme charge transfer in a 2D/2D La2Ti2O7/g-C3N4 nanojunction as a bifunctional photocatalyst for solar-to-energy conversion. J. Mater. Chem. A 2020, 8, 13241–13247.

17

Ren, Y. Y.; Li, Y.; Wu, X. Y.; Wang, J. L.; Zhang, G. K. S-scheme Sb2WO6/g-C3N4 photocatalysts with enhanced visible-light-induced photocatalytic NO oxidation performance. Chin. J. Catal. 2021, 42, 69–77.

18

Guo, S. Q.; Zhang, H. J.; Hu, Z. Z.; Zhen, M. M.; Yang, B.; Shen, B. X.; Dong, F. Composition-dependent micro-structure and photocatalytic performance of g-C3N4 quantum dots@SnS2 heterojunction. Nano Res. 2021, 14, 4188–4196.

19

Che, H. N.; Liu, C. B.; Che, G. B.; Liao, G. F.; Dong, H. J.; Li, C. X.; Song, N.; Li, C. M. Facile construction of porous intramolecular g-C3N4-based donor-acceptor conjugated copolymers as highly efficient photocatalysts for superior H2 evolution. Nano Energy 2020, 67, 104273.

20

Chai, B.; Yan, J. T.; Fan, G. Z.; Song, G. S.; Wang. C. L. In situ fabrication of CdMoO4/g-C3N4 composites with improved charge separation and photocatalytic activity under visible light irradiation. Chin. J. Catal. 2020, 41, 170–179.

21

Wu, X. Y.; Li, Y.; Zhang, G. K.; Chen, H.; Li, J.; Wang, K.; Pan, Y.; Zhao, Y.; Sun, Y. F.; Xie, Y. Photocatalytic CO2 conversion of M0.33WO3 directly from the air with high selectivity: Insight into full spectrum-induced reaction Mechanism. J. Am. Chem. Soc. 2019, 141, 5267–5274.

22

Zeng, Y.; Luo, X.; Li, F.; Huang, A. H.; Wu, H. M.; Xu, G. Q.; Wang, S. L. Noble metal-free FeOOH/Li0.1WO3 core-shell nanorods for selective oxidation of methane to methanol with visible-NIR light. Environ. Sci. Technol. 2021, 55, 7711–7720.

23

Jin, Z. L.; Yan, X.; Hao, X. Q. Rational design of a novel p-n heterojunction based on 3D layered nanoflower MoSx supported CoWO4 nanoparticles for superior photocatalytic hydrogen generation. J. Colloid Interface Sci. 2020, 569, 34–49.

24

Zhang, H. Y.; Tian, W. J.; Li, Y. G.; Sun, H. Q.; Tadé, M. O.; Wang, S. B. Heterostructured WO3@CoWO4 bilayer nanosheets for enhanced visible-light photo, electro and photoelectro-chemical oxidation of water. J. Mater. Chem. A 2018, 6, 6265–6272.

25

Cui, H. J.; Li, B. B.; Zhang, Y. Z.; Zheng, X. D.; Li, X. Z.; Li, Z. Y.; Xu, S. Constructing Z-scheme based CoWO4/CdS photocatalysts with enhanced dye degradation and H2 generation performance. Int. J. Hydrogen Energy 2018, 43, 18242–18252.

26

Kresse, G. Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

27

Bryk, P.; Patrykiejew, A.; Pizio, O.; Sokolowski, S. The chemical potential of Lennard-Jones associating fluids from osmotic monte Carlo simulations. Mol. Phys. 1997, 92, 949–956.

28

VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128.

29

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

30

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

31

Li, J.; Huang, B. J.; Guo, Q.; Guo, S.; Peng, Z. K.; Liu, J.; Tian, Q. Y.; Yang, Y. P.; Xu, Q.; Liu, Z. Y. et al. Van der Waals heterojunction for selective visible-light-driven photocatalytic CO2 reduction. Appl. Catal. B:Environ. 2021, 284, 119733.

32

Zhang, L. L.; Meng, G.; Fan, G. F.; Chen, K. L.; Wu, Y. L.; Liu, J. High flux photocatalytic self-cleaning nanosheet C3N4 membrane supported by cellulose nanofibers for dye wastewater purification. Nano Res. 2021, 14, 2568–2573.

33

Xia, D. H.; Wang, W. J.; Yin, R.; Jiang, Z. F.; An, T. C.; Li, G. Y.; Zhao, H. J.; Wong, P. K. Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: The role of reactive oxygen species. Appl. Catal. B:Environ. 2017, 214, 23–33.

34

Deng, Y. C.; Liu, J.; Huang, Y. B.; Ma, M. M.; Liu, K.; Dou, X. M.; Wang, Z. J.; Qu, S. C.; Wang, Z. G. Engineering the photocatalytic behaviors of g/C3N4-based metal-free materials for degradation of a representative antibiotic. Adv. Funct. Mater. 2020, 30, 2002353.

35

Zhao, X.; Fan, Y. Y.; Zhang, W. S.; Zhang, X. J.; Han, D. X.; Niu, L.; Ivaska, A. Nanoengineering construction of Cu2O nanowire arrays encapsulated with g-C3N4 as 3D spatial reticulation all-solid-state direct Z-scheme photocatalysts for photocatalytic reduction of carbon dioxide. ACS Catal. 2020, 10, 6367–6376.

36

Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Surface engineering of g-C3N4 by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance. Angew. Chem. , Int. Ed. 2020, 59, 4519–4524.

37

Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Luo, J.; Liu, Y. N.; Ouyang, X. L.; Yang, H. R.; Yu, J. F.; Wang, J. J. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution. Adv. Funct. Mater. 2020, 30, 2001922.

38

Zou, Y. D.; Yang, B. B.; Liu, Y.; Ren, Y.; Ma, J. H.; Zhou, X. R.; Cheng, X. W.; Deng, Y. H. Controllable interface-induced Co-assembly toward highly ordered mesoporous Pt@TiO2/g-C3N4 heterojunctions with enhanced photocatalytic performance. Adv. Funct. Mater. 2018, 28, 1806214.

39

Kong, L. Q.; Ji, Y. J.; Dang, Z. Z.; Yan, J. Q.; Li, P.; Li, Y. Y.; Liu, S. Z. g-C3N4 loading black phosphorus quantum dot for efficient and stable photocatalytic H2 generation under visible light. Adv. Funct. Mater. 2018, 28, 1800668.

40

Wang, D.; Qiao, S. S.; Guo, J.; Guo, Y.; Xu, Q.; Akram, N.; Wang, J. D. Efficient Co@Co3O4 core-shell catalysts for photocatalytic water oxidation and its behaviors in two different photocatalytic systems. J. Energy Chem. 2021, 57, 83–91.

41
Li, X. J. ; Zhang, P. P. ; Zhang, H. Y. ; Tian, W. J. ; Yang, Y. Y. ; Hu, K. S. ; Chen, D. C. ; Li, Q. ; Duan, X. G. ; Sun, H. Q. et al. Van der Waals type II carbon nitride homojunctions for visible light photocatalytic hydrogen evolution. Nano Res., in press,DOI: 10.1007/s12274-021-3744-x.
42
He, Q. ; Viengkeo, B. ; Zhao, X. ; Qin, Z. Y. ; Zhang, J. ; Yu, X. H. ; Hu, Y. P. ; Huang, W. ; Li. Y. G. Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production. Nano Res., in press,DOI: 10.1007/s12274-021-3882-1.
43

Manickathai, K.; Viswanathan, S. K.; Alagar, M. Synthesis and characterization of CdO and CdS nanoparticles. Indian J. Pure Appl. Phys. 2008, 46, 561–564.

44

Matte, H. S. S. R.; Subrahmanyam, M. K. S.; Rao, K. V.; George, S. J.; Rao, C. N. R. Quenching of fluorescence of aromatic molecules by graphene due to electron transfer. Chem. Phys. Lett. 2011, 506, 260–264.

45

Li, J.; Wu, X. Y.; Pan, W. F.; Zhang, G. K.; Chen, H. Vacancy-rich monolayer BiO2-x as a highly efficient UV, visible, and near-infrared responsive photocatalyst. Angew. Chem. , Int. Ed. 2018, 57, 491–495.

46

Li, J.; Pan, W. F.; Liu, Q. Y.; Chen, Z. Q.; Chen, Z. J.; Feng, X. Z.; Chen, H. Interfacial engineering of Bi19Br3S27 nanowires promotes metallic photocatalytic CO2 reduction activity under near-infrared light irradiation. J. Am. Chem. Soc. 2021, 143, 6551–6559.

47

Gaudreau, L.; Tielrooij, K. J.; Prawiroatmodjo, G. E. D. K.; Osmond, J.; De Abajo, F. J. G.; Koppens, F. H. L. Universal distance-scaling of nonradiative energy transfer to graphene. Nano Lett. 2013, 13, 2030–2035.

48

Bandiello, E.; Rodríguez-Hernández, P.; Muñoz, A.; Buenestado, M. B.; Popescu, C.; Errandonea, D. Electronic properties and high-pressure behavior of wolframite-type CoWO4. Mater. Adv. 2021, 2, 5955–5966.

49

Li, J.; Zhao, W. H.; Wang, J.; Song, S. X.; Wu, X. Y.; Zhang, G. K. Noble metal-free modified ultrathin carbon nitride with promoted molecular oxygen activation for photocatalytic formaldehyde oxidization and DFT study. Appl. Surf. Sci. 2018, 458, 59–69.

Nano Research
Pages 6987-6998
Cite this article:
Wang H, Niu R, Liu J, et al. Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p–n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling. Nano Research, 2022, 15(8): 6987-6998. https://doi.org/10.1007/s12274-022-4329-z
Topics:

1238

Views

75

Crossref

76

Web of Science

78

Scopus

3

CSCD

Altmetrics

Received: 25 January 2022
Revised: 25 February 2022
Accepted: 14 March 2022
Published: 11 May 2022
© Tsinghua University Press 2022
Return