Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p–n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling

Haiyang Wang1,§Ranran Niu1,§Jianhui Liu1Sheng Guo2()Yongpeng Yang1Zhongyi Liu1Jun Li1()
Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China

§ Haiyang Wang and Ranran Niu contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
An 2D/2D p–n heterojunction was successfully synthesized by self-assembled strategy for efficient photocatalytic H2 generation. This work demonstrates a high-efficient p–n heterojunction photocatalyst with II-scheme charge migration pathway and paves the way to design highly active p–n junction photocatalysts for H2 generation.

Abstract

Two-dimensional (2D) semiconductor heterojunctions are considered as an effective strategy to achieve fast separation of photoinduced carriers. Herein, a novel CoWO4/g-C3N4 (CWO/CN) p–n junction was synthesized using an electrostatic self-assembly method. The constructed 2D/2D p–n heterostructure had a rich hetero-interface, increased charge density, and fast separation efficiency of photoinduced carriers. The in-situ Kelvin probe force microscopy confirmed that the separation pathway of photoinduced carriers through the interface obeyed an II-scheme charge transfer mechanism. Experimental results and density functional theory calculations indicated the differences of work function between CWO and CN induced the generation of built-in electric field, ensuring an efficient separation and transfer process of photoinduced carriers. Under the optimized conditions, the CWO/CN heterojunction displayed enhanced photocatalytic H2 generation activity under full spectrum and visible lights irradiation, respectively. Our study provides a novel approach to design 2D/2D hetero-structured photocatalysts based on p–n type semiconductor for photocatalytic H2 generation.

Electronic Supplementary Material

Download File(s)
12274_2022_4329_MOESM1_ESM.pdf (1 MB)

References

1

Cai, H. R.; Wang, B.; Xiong, L, F.; Bi, J. L.; Hao, H. J.; Yu, X. J.; Li, C.; Liu, J. M.; Yang, S. C. Boosting photocatalytic hydrogen evolution of g-C3N4 catalyst via lowering the Fermi level of co-catalyst. Nano Res. 2022, 15, 1128–1134.

2

Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.

3

Wang, L. X.; Zhang, J. J.; Zhang, Y.; Yu, H. G.; Qu, Y. H.; Yu, J. G. Inorganic metal-oxide photocatalyst for H2O2 production. Small 2021, 18, 2104561.

4

Jian, S. J.; Tian, Z. W.; Hu, J. P.; Zhang, K. Y.; Zhang, L.; Duan, G. G.; Yang, W. S.; Jiang. S. H. Enhanced visible light photocatalytic efficiency of La-doped ZnO nanofibers via electrospinning-calcination technology. Adv. Powder Mater. 2022, 1, 100004.

5

Tong, X. J.; Cao, X.; Han, T.; Cheong, W. C.; Lin, R.; Chen, Z.; Wang, D. S.; Chen, C.; Peng, Q.; Li, Y. D. Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Res. 2019, 12, 1625–1630.

6

Zulfiqar, S.; Liu, S.; Rahman, N.; Tang, H.; Shah, S.; Yu, X. H.; Liu, Q. Q. Construction of S-scheme MnO2@CdS heterojunction with core-shell structure as H2-production photocatalyst. Rare Met. 2021, 40, 2381–2391.

7

Liu, Y. J.; Zhu, Q. H.; Tayyab, M.; Zhou, L.; Lei, J. Y.; Zhang, J. L. Single-atom Pt loaded Zinc vacancies ZnO-ZnS induced type-V electron transport for efficiency photocatalytic H2 evolution. Solar RRL 2021, 5, 2100536.

8

Gong, Y. N.; Shao, B. Z.; Mei, J. H.; Yang, W.; Zhong, D. C.; Lu, T. B. Facile synthesis of C3N4-supported metal catalysts for efficient CO2 photoreduction. Nano Res. 2022, 15, 551–556.

9

Aggarwal, M.; Basu, S.; Shetti, N. P.; Nadagouda, M. N.; Kwon, E. E.; Park, Y. K.; Aminabhavi, T. M. Photocatalytic carbon dioxide reduction: Exploring the role of ultrathin 2D graphitic carbon nitride (g-C3N4). Chem. Eng. J. 2021, 425, 131402.

10

Shen, J. X.; Li, Y. Z.; Zhao, H. Y.; Pan, K.; Li, X.; Qu, Y.; Wang, G. F.; Wang, D. S. Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res. 2019, 12, 1931–1936.

11

Xing, M. Y.; Xu, W. J.; Dong, C. C.; Bai, Y. C.; Zeng, J. B.; Zhou, Y.; Zhang, J. L.; Yin, Y. D. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 2018, 4, 1359–1372.

12

Liu, J.; Guo, S.; Wu, H. Z.; Zhang, X. L.; Li, J.; Zhou, K. Synergetic effects of Bi5+ and oxygen vacancies in Bismuth(V)-rich Bi4O7 nanosheets for enhanced near-infrared light driven photocatalysis. J. Mater. Sci. Technol. 2021, 85, 1–10.

13

Wang, H.; Jiang, S. L.; Shao, W.; Zhang, X. D.; Chen, S. C.; Sun, X. S.; Zhang, Q.; Luo, Y.; Xie, Y. Optically switchable photocatalysis in ultrathin black phosphorus nanosheets. J. Am. Chem. Soc. 2018, 140, 3474–3480.

14

Xiao, X. D.; Lin, S. Y.; Zhang, L. P.; Meng, H. Y.; Zhou, J.; Li, Q.; Liu, J. N.; Qiao, P. Z.; Jiang, B. J. Constructing Pd−N interactions in Pd/g-C3N4 to improve the charge dynamics for efficient photocatalytic hydrogen evolution. Nano Res. 2022, 15, 2928–2934.

15
Xiao, M.; Jiao, Y. L.; Luo, B.; Wang, S. C.; Chen, P.; Lyu, M. Q.; Du, A. J.; Wang, L. Z. Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution. Nano Res., in press, DOI: 10.1007/s12274-021-3897-7.
16

Wang, K.; Jiang, L. S.; Wu, X. Y.; Zhang, G. K. Vacancy mediated Z-scheme charge transfer in a 2D/2D La2Ti2O7/g-C3N4 nanojunction as a bifunctional photocatalyst for solar-to-energy conversion. J. Mater. Chem. A 2020, 8, 13241–13247.

17

Ren, Y. Y.; Li, Y.; Wu, X. Y.; Wang, J. L.; Zhang, G. K. S-scheme Sb2WO6/g-C3N4 photocatalysts with enhanced visible-light-induced photocatalytic NO oxidation performance. Chin. J. Catal. 2021, 42, 69–77.

18

Guo, S. Q.; Zhang, H. J.; Hu, Z. Z.; Zhen, M. M.; Yang, B.; Shen, B. X.; Dong, F. Composition-dependent micro-structure and photocatalytic performance of g-C3N4 quantum dots@SnS2 heterojunction. Nano Res. 2021, 14, 4188–4196.

19

Che, H. N.; Liu, C. B.; Che, G. B.; Liao, G. F.; Dong, H. J.; Li, C. X.; Song, N.; Li, C. M. Facile construction of porous intramolecular g-C3N4-based donor-acceptor conjugated copolymers as highly efficient photocatalysts for superior H2 evolution. Nano Energy 2020, 67, 104273.

20

Chai, B.; Yan, J. T.; Fan, G. Z.; Song, G. S.; Wang. C. L. In situ fabrication of CdMoO4/g-C3N4 composites with improved charge separation and photocatalytic activity under visible light irradiation. Chin. J. Catal. 2020, 41, 170–179.

21

Wu, X. Y.; Li, Y.; Zhang, G. K.; Chen, H.; Li, J.; Wang, K.; Pan, Y.; Zhao, Y.; Sun, Y. F.; Xie, Y. Photocatalytic CO2 conversion of M0.33WO3 directly from the air with high selectivity: Insight into full spectrum-induced reaction Mechanism. J. Am. Chem. Soc. 2019, 141, 5267–5274.

22

Zeng, Y.; Luo, X.; Li, F.; Huang, A. H.; Wu, H. M.; Xu, G. Q.; Wang, S. L. Noble metal-free FeOOH/Li0.1WO3 core-shell nanorods for selective oxidation of methane to methanol with visible-NIR light. Environ. Sci. Technol. 2021, 55, 7711–7720.

23

Jin, Z. L.; Yan, X.; Hao, X. Q. Rational design of a novel p-n heterojunction based on 3D layered nanoflower MoSx supported CoWO4 nanoparticles for superior photocatalytic hydrogen generation. J. Colloid Interface Sci. 2020, 569, 34–49.

24

Zhang, H. Y.; Tian, W. J.; Li, Y. G.; Sun, H. Q.; Tadé, M. O.; Wang, S. B. Heterostructured WO3@CoWO4 bilayer nanosheets for enhanced visible-light photo, electro and photoelectro-chemical oxidation of water. J. Mater. Chem. A 2018, 6, 6265–6272.

25

Cui, H. J.; Li, B. B.; Zhang, Y. Z.; Zheng, X. D.; Li, X. Z.; Li, Z. Y.; Xu, S. Constructing Z-scheme based CoWO4/CdS photocatalysts with enhanced dye degradation and H2 generation performance. Int. J. Hydrogen Energy 2018, 43, 18242–18252.

26

Kresse, G. Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

27

Bryk, P.; Patrykiejew, A.; Pizio, O.; Sokolowski, S. The chemical potential of Lennard-Jones associating fluids from osmotic monte Carlo simulations. Mol. Phys. 1997, 92, 949–956.

28

VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128.

29

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

30

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

31

Li, J.; Huang, B. J.; Guo, Q.; Guo, S.; Peng, Z. K.; Liu, J.; Tian, Q. Y.; Yang, Y. P.; Xu, Q.; Liu, Z. Y. et al. Van der Waals heterojunction for selective visible-light-driven photocatalytic CO2 reduction. Appl. Catal. B:Environ. 2021, 284, 119733.

32

Zhang, L. L.; Meng, G.; Fan, G. F.; Chen, K. L.; Wu, Y. L.; Liu, J. High flux photocatalytic self-cleaning nanosheet C3N4 membrane supported by cellulose nanofibers for dye wastewater purification. Nano Res. 2021, 14, 2568–2573.

33

Xia, D. H.; Wang, W. J.; Yin, R.; Jiang, Z. F.; An, T. C.; Li, G. Y.; Zhao, H. J.; Wong, P. K. Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: The role of reactive oxygen species. Appl. Catal. B:Environ. 2017, 214, 23–33.

34

Deng, Y. C.; Liu, J.; Huang, Y. B.; Ma, M. M.; Liu, K.; Dou, X. M.; Wang, Z. J.; Qu, S. C.; Wang, Z. G. Engineering the photocatalytic behaviors of g/C3N4-based metal-free materials for degradation of a representative antibiotic. Adv. Funct. Mater. 2020, 30, 2002353.

35

Zhao, X.; Fan, Y. Y.; Zhang, W. S.; Zhang, X. J.; Han, D. X.; Niu, L.; Ivaska, A. Nanoengineering construction of Cu2O nanowire arrays encapsulated with g-C3N4 as 3D spatial reticulation all-solid-state direct Z-scheme photocatalysts for photocatalytic reduction of carbon dioxide. ACS Catal. 2020, 10, 6367–6376.

36

Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Surface engineering of g-C3N4 by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance. Angew. Chem. , Int. Ed. 2020, 59, 4519–4524.

37

Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Luo, J.; Liu, Y. N.; Ouyang, X. L.; Yang, H. R.; Yu, J. F.; Wang, J. J. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution. Adv. Funct. Mater. 2020, 30, 2001922.

38

Zou, Y. D.; Yang, B. B.; Liu, Y.; Ren, Y.; Ma, J. H.; Zhou, X. R.; Cheng, X. W.; Deng, Y. H. Controllable interface-induced Co-assembly toward highly ordered mesoporous Pt@TiO2/g-C3N4 heterojunctions with enhanced photocatalytic performance. Adv. Funct. Mater. 2018, 28, 1806214.

39

Kong, L. Q.; Ji, Y. J.; Dang, Z. Z.; Yan, J. Q.; Li, P.; Li, Y. Y.; Liu, S. Z. g-C3N4 loading black phosphorus quantum dot for efficient and stable photocatalytic H2 generation under visible light. Adv. Funct. Mater. 2018, 28, 1800668.

40

Wang, D.; Qiao, S. S.; Guo, J.; Guo, Y.; Xu, Q.; Akram, N.; Wang, J. D. Efficient Co@Co3O4 core-shell catalysts for photocatalytic water oxidation and its behaviors in two different photocatalytic systems. J. Energy Chem. 2021, 57, 83–91.

41
Li, X. J. ; Zhang, P. P. ; Zhang, H. Y. ; Tian, W. J. ; Yang, Y. Y. ; Hu, K. S. ; Chen, D. C. ; Li, Q. ; Duan, X. G. ; Sun, H. Q. et al. Van der Waals type II carbon nitride homojunctions for visible light photocatalytic hydrogen evolution. Nano Res., in press,DOI: 10.1007/s12274-021-3744-x.
42
He, Q. ; Viengkeo, B. ; Zhao, X. ; Qin, Z. Y. ; Zhang, J. ; Yu, X. H. ; Hu, Y. P. ; Huang, W. ; Li. Y. G. Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production. Nano Res., in press,DOI: 10.1007/s12274-021-3882-1.
43

Manickathai, K.; Viswanathan, S. K.; Alagar, M. Synthesis and characterization of CdO and CdS nanoparticles. Indian J. Pure Appl. Phys. 2008, 46, 561–564.

44

Matte, H. S. S. R.; Subrahmanyam, M. K. S.; Rao, K. V.; George, S. J.; Rao, C. N. R. Quenching of fluorescence of aromatic molecules by graphene due to electron transfer. Chem. Phys. Lett. 2011, 506, 260–264.

45

Li, J.; Wu, X. Y.; Pan, W. F.; Zhang, G. K.; Chen, H. Vacancy-rich monolayer BiO2-x as a highly efficient UV, visible, and near-infrared responsive photocatalyst. Angew. Chem. , Int. Ed. 2018, 57, 491–495.

46

Li, J.; Pan, W. F.; Liu, Q. Y.; Chen, Z. Q.; Chen, Z. J.; Feng, X. Z.; Chen, H. Interfacial engineering of Bi19Br3S27 nanowires promotes metallic photocatalytic CO2 reduction activity under near-infrared light irradiation. J. Am. Chem. Soc. 2021, 143, 6551–6559.

47

Gaudreau, L.; Tielrooij, K. J.; Prawiroatmodjo, G. E. D. K.; Osmond, J.; De Abajo, F. J. G.; Koppens, F. H. L. Universal distance-scaling of nonradiative energy transfer to graphene. Nano Lett. 2013, 13, 2030–2035.

48

Bandiello, E.; Rodríguez-Hernández, P.; Muñoz, A.; Buenestado, M. B.; Popescu, C.; Errandonea, D. Electronic properties and high-pressure behavior of wolframite-type CoWO4. Mater. Adv. 2021, 2, 5955–5966.

49

Li, J.; Zhao, W. H.; Wang, J.; Song, S. X.; Wu, X. Y.; Zhang, G. K. Noble metal-free modified ultrathin carbon nitride with promoted molecular oxygen activation for photocatalytic formaldehyde oxidization and DFT study. Appl. Surf. Sci. 2018, 458, 59–69.

Nano Research
Pages 6987-6998
Cite this article:
Wang H, Niu R, Liu J, et al. Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p–n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling. Nano Research, 2022, 15(8): 6987-6998. https://doi.org/10.1007/s12274-022-4329-z
Topics:
Metrics & Citations  
Article History
Copyright
Return