AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanomechanical assay for ultrasensitive and rapid detection of SARS-CoV-2 based on peptide nucleic acid

Yu Wang1Tianhao Yan1Kainan Mei1Depeng Rao1Wenjie Wu1Ye Chen1Yongpei Peng1Jianye Wang2Shangquan Wu1( )Qingchuan Zhang1( )
CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
Show Author Information

Graphical Abstract

Herein, a nanomechanical sensoring assay based on peptide nucleic acid and microcantilever array has been developed for ultrasensitive and amplification-free detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Thanks to the stress enhancement brought by PNA and the mechanics-based microcantilever which is very sensitive to stress, the method has an extremely low detection limit of 50 copies/mL of the N gene of SARS-CoV-2 within 1 h.

Abstract

The massive global spread of the COVID-19 pandemic makes the development of more effective and easily popularized assays critical. Here, we developed an ultrasensitive nanomechanical method based on microcantilever array and peptide nucleic acid (PNA) for the detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) RNA. The method has an extremely low detection limit of 0.1 fM (105 copies/mL) for N-gene specific sequence (20 bp). Interestingly, it was further found that the detection limit of N gene (pharyngeal swab sample) was even lower, reaching 50 copies/mL. The large size of the N gene dramatically enhances the sensitivity of the nanomechanical sensor by up to three orders of magnitude. The detection limit of this amplification-free assay method is an order of magnitude lower than RT-PCR (500 copies/mL) that requires amplification. The non-specific signal in the assay is eliminated by the in-situ comparison of the array, reducing the false-positive misdiagnosis rate. The method is amplification-free and label-free, allowing for accurate diagnosis within 1 h. The strong specificity and ultra-sensitivity allow single base mutations in viruses to be distinguished even at very low concentrations. Also, the method remains sensitive to fM magnitude lung cancer marker (miRNA-155). Therefore, this ultrasensitive, amplification-free and inexpensive assay is expected to be used for the early diagnosis of COVID-19 patients and to be extended as a broad detection tool.

Electronic Supplementary Material

Download File(s)
12274_2022_4333_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Huang, C. L.; Wang, Y. M.; Li, X. W.; Ren, L. L.; Zhao, J. P.; Hu, Y.; Zhang, L.; Fan, G. H.; Xu, J. Y.; Gu, X. Y. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, china. Lancet 2020, 395, 497–506.

[2]

Lu, R. J.; Zhao, X.; Li, J.; Niu, P. H.; Yang, B.; Wu, H. L.; Wang, W. L.; Song, H.; Huang, B. Y.; Zhu, N. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574.

[3]

Wei, J.; Alfajaro, M. M.; DeWeirdt, P. C.; Hanna, R. E.; Lu-Culligan, W. J.; Cai, W. L.; Strine, M. S.; Zhang, S. M.; Graziano, V. R.; Schmitz, C. O. et al. Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection. Cell 2021, 184, 76–91.e13.

[4]

Wang, P.; Lau, S. Y.; Deng, S. F.; Chen, P.; Mok, B. W. Y.; Zhang, A. J.; Lee, A. C. Y.; Chan, K. H.; Tam, R. C. Y.; Xu, H. R. et al. Characterization of an attenuated SARS-CoV-2 variant with a deletion at the S1/S2 junction of the spike protein. Nat. Commun. 2021, 12, 2790.

[5]

Chaibun, T.; Puenpa, J.; Ngamdee, T.; Boonapatcharoen, N.; Athamanolap, P.; O'Mullane, A. P.; Vongpunsawad, S.; Poovorawan, Y.; Lee, S. Y.; Lertanantawong, B. Rapid electrochemical detection of coronavirus SARS-CoV-2. Nat. Commun. 2021, 12, 802.

[6]

Yao, Z.; Drecun, L.; Aboualizadeh, F.; Kim, S. J.; Li, Z. J.; Wood, H.; Valcourt, E. J.; Manguiat, K.; Plenderleith, S.; Yip, L. et al. A homogeneous split-luciferase assay for rapid and sensitive detection of anti-SARS CoV-2 antibodies. Nat. Commun. 2021, 12, 1806.

[7]

Deng, J. Q.; Tian, F.; Liu, C.; Liu, Y.; Zhao, S.; Fu, T.; Sun, J. S.; Tan, W. H. Rapid one-step detection of viral particles using an aptamer-based thermophoretic assay. J. Am. Chem. Soc. 2021, 143, 7261–7266.

[8]

Wang, D. M.; He, S. G.; Wang, X. H.; Yan, Y. Q.; Liu, J. Z.; Wu, S. M.; Liu, S. G.; Lei, Y.; Chen, M.; Li, L. et al. Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA. Nat. Biomed. Eng. 2020, 4, 1150–1158.

[9]

Arizti-Sanz, J.; Freije, C. A.; Stanton, A. C.; Petros, B. A.; Boehm, C. K.; Siddiqui, S.; Shaw, B. M.; Adams, G.; Kosoko-Thoroddsen, T. S. F.; Kemball, M. E. et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat. Commun. 2020, 11, 5921.

[10]

Ding, X.; Yin, K.; Li, Z. Y.; Lalla, R. V.; Ballesteros, E.; Sfeir, M. M.; Liu, C. C. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat. Commun. 2020, 11, 4711.

[11]

Chandrasekaran, A. R.; Zhou, L. F.; Halvorsen, K. Rapid one-step detection of SARS-CoV-2 RNA. Nat. Biomed. Eng. 2020, 4, 1123–1124.

[12]

Dispinseri, S.; Secchi, M.; Pirillo, M. F.; Tolazzi, M.; Borghi, M.; Brigatti, C.; De Angelis, M. L.; Baratella, M.; Bazzigaluppi, E.; Venturi, G. et al. Neutralizing antibody responses to SARS-CoV-2 in symptomatic COVID-19 is persistent and critical for survival. Nat. Commun. 2021, 12, 2670.

[13]

Ghosh, S.; Mishra, S.; Mukhopadhyay, R. Enhancing sensitivity in a piezoresistive cantilever-based label-free DNA detection assay using ssPNA sensor probes. J. Mater. Chem. B 2014, 2, 960–970.

[14]

Huber, F.; Lang, H. P.; Backmann, N.; Rimoldi, D.; Gerber, C. Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays. Nat. Nanotechnol. 2013, 8, 125–129.

[15]

Patil, S. B.; Vögtli, M.; Webb, B.; Mazza, G.; Pinzani, M.; Soh, Y. A.; McKendry, R. A.; Ndieyira, J. W. Decoupling competing surface binding kinetics and reconfiguration of receptor footprint for ultrasensitive stress assays. Nat. Nanotechnol. 2015, 10, 899–907.

[16]

Zhou, X. R.; Wu, S. Q.; Liu, H.; Wu, X. P.; Zhang, Q. C. Nanomechanical label-free detection of aflatoxin B1 using a microcantilever. Sens. Actuators B Chem. 2016, 226, 24–29.

[17]

Wu, S. Q.; Liu, X. L.; Zhou, X. R.; Liang, X. M.; Gao, D. Y.; Liu, H.; Zhao, G.; Zhang, Q. C.; Wu, X. P. Quantification of cell viability and rapid screening anti-cancer drug utilizing nanomechanical fluctuation. Biosens. Bioelectron. 2016, 77, 164–173.

[18]

Rao, D. P.; Mei, K. N.; Yan, T. H.; Wang, Y.; Wu, W. J.; Chen, Y.; Wang, J. Y.; Zhang, Q. C.; Wu, S. Q. Nanomechanical sensor for rapid and ultrasensitive detection of tumor markers in serum using nanobody. Nano Res. 2022, 15, 1003–1012.

[19]

Zhang, G. P.; Li, C.; Wu, S. Q.; Zhang, Q. C. Label-free aptamer-based detection of microcystin-LR using a microcantilever array biosensor. Sens. Actuators B Chem. 2018, 260, 42–47.

[20]

Wu, S. Q.; Zhang, Z. G.; Zhou, X. R.; Liu, H.; Xue, C. G.; Zhao, G.; Cao, Y. X.; Zhang, Q. C.; Wu, X. P. Nanomechanical sensors for direct and rapid characterization of sperm motility based on nanoscale vibrations. Nanoscale 2017, 9, 18258–18267.

[21]

Wu, S. Q.; Liu, H.; Liang, X. M.; Wu, X. P.; Wang, B. M.; Zhang, Q. C. Highly sensitive nanomechanical immunosensor using half antibody fragments. Anal. Chem. 2014, 86, 4271–4277.

[22]

Wu, S. Q.; Nan, T. G.; Xue, C. G.; Cheng, T.; Liu, H.; Wang, B. M.; Zhang, Q. C.; Wu, X. P. Mechanism and enhancement of the surface stress caused by a small-molecule antigen and antibody binding. Biosens. Bioelectron. 2013, 48, 67–74.

[23]

Men, D.; Zhou, J.; Li, W.; Wei, C. H.; Chen, Y. Y.; Zhou, K.; Zheng, Y.; Xu, K.; Zhang, Z. P.; Zhang, X. E. Self-assembly of antigen proteins into nanowires greatly enhances the binding affinity for high-efficiency target capture. ACS Appl. Mater. Interfaces 2018, 10, 41019–41025.

[24]

Moccia, M.; Caratelli, V.; Cinti, S.; Pede, B.; Avitabile, C.; Saviano, M.; Imbriani, A. L.; Moscone, D.; Arduini, F. Paper-based electrochemical peptide nucleic acid (PNA) biosensor for detection of miRNA-492: A pancreatic ductal adenocarcinoma biomarker. Biosens. Bioelectron. 2020, 165, 112371.

[25]

Zhao, Y.; Gosai, A.; Shrotriya, P. Effect of receptor attachment on sensitivity of label free microcantilever based biosensor using malachite green aptamer. Sens. Actuators B Chem. 2019, 300, 126963.

[26]

Xu, S.; Chang, Y. Y.; Wu, Z. Y.; Li, Y. R.; Yuan, R.; Chai, Y. Q. One DNA circle capture probe with multiple target recognition domains for simultaneous electrochemical detection of miRNA-21 and miRNA-155. Biosens. Bioelectron. 2020, 149, 111848.

[27]

Wiggins, P. A.; van der Heijden, T.; Moreno-Herrero, F.; Spakowitz, A.; Phillips, R.; Widom, J.; Dekker, C.; Nelson, P. C. High flexibility of DNA on short length scales probed by atomic force microscopy. Nat. Nanotechnol. 2006, 1, 137–141.

[28]

Wu, G. H.; Ji, H. F.; Hansen, K.; Thundat, T.; Datar, R.; Cote, R.; Hagan, M. F.; Chakraborty, A. K.; Majumdar, A. Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc. Natl. Acad. Sci. USA 2001, 98, 1560–1564.

[29]

Yu, Z. G.; Hu, P.; Xu, Y. Y.; Bao, Q. Q.; Ni, D. L.; Wei, C. Y.; Shi, J. L. Efficient gene therapy of pancreatic cancer via a peptide nucleic acid (PNA)-loaded layered double hydroxides (LDH) nanoplatform. Small 2020, 16, 1907233.

[30]

Asandei, A.; Mereuta, L.; Park, J.; Seo, C. H.; Park, Y.; Luchian, T. Nonfunctionalized PNAs as beacons for nucleic acid detection in a nanopore system. ACS Sens. 2019, 4, 1502–1507.

[31]

Fortunati, S.; Rozzi, A.; Curti, F.; Giannetto, M.; Corradini, R.; Careri, M. Novel amperometric genosensor based on peptide nucleic acid (PNA) probes immobilized on carbon nanotubes-screen printed electrodes for the determination of trace levels of non-amplified DNA in genetically modified (GM) soy. Biosens. Bioelectron. 2019, 129, 7–14.

[32]

Gavins, G. C.; Gröger, K.; Bartoschek, M. D.; Wolf, P.; Beck-Sickinger, A. G.; Bultmann, S.; Seitz, O. Live cell PNA labelling enables erasable fluorescence imaging of membrane proteins. Nat. Chem. 2021, 13, 15–23.

[33]

Jolly, P.; Rainbow, J.; Regoutz, A.; Estrela, P.; Moschou, D. A PNA-based Lab-on-PCB diagnostic platform for rapid and high sensitivity DNA quantification. Biosens. Bioelectron. 2019, 123, 244–250.

[34]

Goyal, G.; Ammanath, G.; Palaniappan, A.; Liedberg, B. Stoichiometric tuning of PNA probes to Au0.8Ag0.2 alloy nanoparticles for visual detection of nucleic acids in plasma. ACS Sens. 2020, 5, 2476–2485.

[35]

Liu, L.; Lu, H.; Shi, R. X.; Peng, X. X.; Xiang, Q. W.; Wang, B. W.; Wan, Q. Q.; Sun, Y. J.; Yang, F.; Zhang, G. J. Synergy of peptide-nucleic acid and spherical nucleic acid enabled quantitative and specific detection of tumor exosomal MicroRNA. Anal. Chem. 2019, 91, 13198–13205.

[36]

Wang, H.; Tang, H. R.; Yang, C.; Li, Y. X. Selective single molecule nanopore sensing of microRNA using PNA functionalized magnetic core-shell Fe3O4-Au nanoparticles. Anal. Chem. 2019, 91, 7965–7970.

[37]

Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M. B.; Pan, D. P. J. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano 2020, 14, 7617–7627.

[38]

Ghosh, S.; Mukhopadhyay, R. An atomic force microscopy investigation on self-assembled peptide nucleic acid structures on gold(111) surface. J. Colloid Interface Sci. 2011, 360, 52–60.

[39]

Qiu, G. Y.; Gai, Z. B.; Tao, Y. L.; Schmitt, J.; Kullak-Ublick, G. A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 2020, 14, 5268–5277.

[40]

Zhao, C.; Hoppe, T.; Setty, M. K. H. G.; Murray, D.; Chun, T. W.; Hewlett, I.; Appella, D. H. Quantification of plasma HIV RNA using chemically engineered peptide nucleic acids. Nat. Commun. 2014, 5, 5079.

[41]

Alafeef, M.; Dighe, K.; Moitra, P.; Pan, D. P. J. Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano 2020, 14, 17028–17045.

[42]

Jiang, Y. Z.; Hu, M. L.; Liu, A. A.; Lin, Y.; Liu, L. L.; Yu, B.; Zhou, X. M.; Pang, D. W. Detection of SARS-CoV-2 by CRISPR/Cas12a-enhanced colorimetry. ACS Sens. 2021, 6, 1086–1093.

[43]

Chen, X. D.; Gole, J.; Gore, A.; He, Q. Y.; Lu, M.; Min, J.; Yuan, Z. Y.; Yang, X. R.; Jiang, Y. F.; Zhang, T. J. et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat. Commun. 2020, 11, 3475.

[44]

Liu, L.; Zhu, S. Y.; Wei, Y. M.; Liu, X. L.; Jiao, S. L.; Yang, J. J. Ultrasensitive detection of miRNA-155 based on controlled fabrication of AuNPs@MoS2 nanostructures by atomic layer deposition. Biosens. Bioelectron. 2019, 144, 111660.

[45]

Li, Q. Q.; Wu, J. J.; Nie, J. H.; Zhang, L.; Hao, H.; Liu, S.; Zhao, C. Y.; Zhang, Q.; Liu, H.; Nie, L. L. et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 2020, 182, 1284–1294.e9.

[46]

Plante, J. A.; Liu, Y.; Liu, J. Y.; Xia, H. J.; Johnson, B. A.; Lokugamage, K. G.; Zhang, X. W.; Muruato, A. E.; Zou, J.; Fontes-Garfias, C. R. et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 2021, 592, 116–121.

[47]

Prabhakar, N.; Arora, K.; Arya, S. K.; Solanki, P. R.; Iwamoto, M.; Singh, H.; Malhotra, B. D. Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance. Analyst 2008, 133, 1587–1592.

[48]

Yang, L. H.; Ahn, D. J.; Koo, E. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization. Mater. Sci. Eng. C 2016, 69, 625–630.

[49]

Tian, M.; Qiao, M.; Shen, C. C.; Meng, F. L.; Frank, L. A.; Krasitskaya, V. V.; Wang, T. J.; Zhang, X. M.; Song, R. H.; Li, Y. X. et al. Highly-sensitive graphene field effect transistor biosensor using PNA and DNA probes for RNA detection. Appl. Surf. Sci. 2020, 527, 146839.

[50]

Álvarez, M.; Carrascosa, L. G.; Moreno, M.; Calle, A.; Zaballos, Á.; Lechuga, L. M.; Martínez-A, C.; Tamayo, J. Nanomechanics of the formation of DNA self-assembled monolayers and hybridization on microcantilevers. Langmuir 2004, 20, 9663–9668.

[51]

Zhang, N. H.; Chen, J. Z.; Li, J. J.; Tan, Z. Q. Mechanical properties of DNA biofilms adsorbed on microcantilevers in label-free biodetections. Biomaterials 2010, 31, 6659–6666.

[52]

Zhang, N. H.; Meng, W. L.; Tan, Z. Q. A multi-scale model for the analysis of the inhomogeneity of elastic properties of DNA biofilm on microcantilevers. Biomaterials 2013, 34, 1833–1842.

[53]

Ananthanawat, C.; Vilaivan, T.; Hoven, V. P.; Su, X. D. Comparison of DNA, aminoethylglycyl PNA and pyrrolidinyl PNA as probes for detection of DNA hybridization using surface plasmon resonance technique. Biosens. Bioelectron. 2010, 25, 1064–1069.

[54]

Mertens, J.; Rogero, C.; Calleja, M.; Ramos, D.; Martin-Gago, J. A.; Briones, C.; Tamayo, J. Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat. Nanotechnol. 2008, 3, 301–307.

Nano Research
Pages 1183-1195
Cite this article:
Wang Y, Yan T, Mei K, et al. Nanomechanical assay for ultrasensitive and rapid detection of SARS-CoV-2 based on peptide nucleic acid. Nano Research, 2023, 16(1): 1183-1195. https://doi.org/10.1007/s12274-022-4333-3
Topics:

1562

Views

8

Crossref

7

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 09 February 2022
Revised: 14 March 2022
Accepted: 16 March 2022
Published: 19 May 2022
© Tsinghua University Press 2022
Return