AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Rational design of eco-friendly Mn-doped nonstoichiometric CuInSe/ZnSe core/shell quantum dots for boosted photoelectrochemical efficiency

Rui Wang1Xin Tong1,2( )Zhihang Long1Ali Imran Channa1,4Hongyang Zhao1Xin Li1Mengke Cai1Yimin You1Xuping Sun1( )Zhiming Wang1,2,3( )
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
Show Author Information

Graphical Abstract

The Mn doping in eco-friendly nonstoichiometric CISe/ZnSe core/shell quantum dots (QDs) enables retarded charge recombination and improved electron extraction/injection to boost the photoelectrochemical (PEC) efficiency of QDs-based photoanodes.

Abstract

Colloidal core/shell quantum dots (QDs) with environment-friendly feature and controllable optoelectronic properties are promising building blocks in emerging solar technologies. In this work, we rationally design and tailor the eco-friendly CuInSe (CISe)/ZnSe core/shell QDs by Mn doping and stoichiometric optimization (i.e., molar ratios of Cu/In). It is demonstrated that Mn doping in In-rich CISe/ZnSe core/shell QDs can effectively engineer the charge kinetics inside the QDs, enabling efficient photogenerated electrons transfer into the shell for retarded charge recombination. As a result, a solar-driven photoelectrochemical (PEC) device fabricated using the optimized Mn-doped In-rich CISe/ZnSe core/shell QDs (Cu/In ratio of 1/2) exhibits improved charge extraction and injection, showing a ~ 3.5-fold higher photocurrent density than that of the pristine CISe/ZnSe core/shell QDs under 1 sun AM 1.5G illumination. The findings indicate that transition metal doping in “green” nonstoichiometric core/shell QDs may offer a new strategy for achieving high-efficiency solar energy conversion applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4334_MOESM1_ESM.pdf (1.7 MB)

References

1

Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771.

2

De Arquer, F. P. G.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

3

Huang, X. L.; Tong, X.; Wang, Z. M. Rational design of colloidal core/shell quantum dots for optoelectronic applications. J. Electron. Sci. Technol. 2020, 18, 100018.

4

Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803.

5

Tang, J.; Sargent, E. H. Infrared colloidal quantum dots for photovoltaics: Fundamentals and recent progress. Adv. Mater. 2011, 23, 12–29.

6

Jin, L.; Zhao, H. G.; Wang, Z. M.; Rosei, F. Quantum dots-based photoelectrochemical hydrogen evolution from water splitting. Adv. Energy Mater. 2021, 11, 2003233.

7

Ren, S. H.; Wang, M. R.; Wang, X. H.; Han, G. T.; Zhang, Y. M.; Zhao, H. G.; Vomiero, A. Near-infrared heavy-metal-free snse/znse quantum dots for efficient photoelectrochemical hydrogen generation. Nanoscale 2021, 13, 3519–3527.

8

Livache, C.; Martinez, B.; Goubet, N.; Gréboval, C.; Qu, J. L.; Chu, A.; Royer, S.; Ithurria, S.; Silly, M. G.; Dubertret, B. et al. A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat. Commun. 2019, 10, 2125.

9

Zhang, B.; Zhang, S. X.; Yao, R.; Wu, Y. H.; Qiu, J. S. Progress and prospects of hydrogen production: Opportunities and challenges. J. Electron. Sci. Technol. 2021, 19, 100080.

10

Wang, X. H.; Wang, M. R.; Liu, G. J.; Zhang, Y. M.; Han, G. T.; Vomiero, A.; Zhao, H. G. Colloidal carbon quantum dots as light absorber for efficient and stable ecofriendly photoelectrochemical hydrogen generation. Nano Energy 2021, 86, 106122.

11

Ahn, H. J.; Kim, M. J.; Kim, K.; Kwak, M. J.; Jang, J. H. Optimization of quantum dot-sensitized photoelectrode for realization of visible light hydrogen generation. Small 2014, 10, 2325–2330.

12

Jin, L.; AlOtaibi, B.; Benetti, D.; Li, S.; Zhao, H. G.; Mi, Z. T.; Vomiero, A.; Rosei, F. Near-infrared colloidal quantum dots for efficient and durable photoelectrochemical solar-driven hydrogen production. Adv. Sci. 2016, 3, 1500345.

13

Trevisan, R.; Rodenas, P.; Gonzalez-Pedro, V.; Sima, C.; Sanchez, R. S.; Barea, E. M.; Mora-Sero, I.; Fabregat-Santiago, F.; Gimenez, S. Harnessing infrared photons for photoelectrochemical hydrogen generation. A PbS quantum dot based “quasi-artificial leaf”. J. Phys. Chem. Lett. 2013, 4, 141–146.

14

Luo, J. S.; Karuturi, S. K.; Liu, L. J.; Su, L. T.; Tok, A. I. Y.; Fan, H. J. Homogeneous photosensitization of complex TiO2 nanostructures for efficient solar energy conversion. Sci. Rep. 2012, 2, 451.

15

Xu, J. Y.; Tong, X.; Besteiro, L. V.; Li, X.; Hu, C. X.; Liu, R. T.; Channa, A. I.; Zhao, H. G.; Rosei, F.; Govorov, A. O. et al. Rational synthesis of novel “giant” CuInTeSe/CdS core/shell quantum dots for optoelectronics. Nanoscale 2021, 13, 15301–15310.

16

Du, J.; Du, Z. L.; Hu, J. S.; Pan, Z. X.; Shen, Q.; Sun, J. K.; Long, D. H.; Dong, H.; Sun, L. T.; Zhong, X. H. et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J. Am. Chem. Soc. 2016, 138, 4201–4209.

17

Yarema, O.; Bozyigit, D.; Rousseau, I.; Nowack, L.; Yarema, M.; Heiss, W.; Wood, V. Highly luminescent, size-and shape-tunable copper indium selenide based colloidal nanocrystals. Chem. Mater. 2013, 25, 3753–3757.

18

Witt, E.; Kolny-Olesiak, J. Recent developments in colloidal synthesis of CuInSe2 nanoparticles. Chem.—Eur. J. 2013, 19, 9746–9753.

19

Regmi, G.; Ashok, A.; Chawla, P.; Semalti, P.; Velumani, S.; Sharma, S. N.; Castaneda, H. Perspectives of chalcopyrite-based CIGSe thin-film solar cell: A review. J. Mater. Sci. Mater. Electron. 2020, 31, 7286–7314.

20

Tong, X.; Zhou, Y. F.; Jin, L.; Basu, K.; Adhikari, R.; Selopal, G. S.; Tong, X.; Zhao, H. G.; Sun, S. H.; Vomiero, A. et al. Heavy metal-free, near-infrared colloidal quantum dots for efficient photoelectrochemical hydrogen generation. Nano Energy 2017, 31, 441–449.

21

Du, J.; Singh, R.; Fedin, I.; Fuhr, A. S.; Klimov, V. I. Spectroscopic insights into high defect tolerance of Zn: CuInSe2 quantum-dot-sensitized solar cells. Nat. Energy 2020, 5, 409–417.

22

Tong, X.; Kong, X. T.; Zhou, Y. F.; Navarro-Pardo, F.; Selopal, G. S.; Sun, S. H.; Govorov, A. O.; Zhao, H. G.; Wang, Z. M.; Rosei, F. Near-infrared, heavy metal-free colloidal “giant” core/shell quantum dots. Adv. Energy Mater. 2018, 8, 1701432.

23

Bae, W. K.; Padilha, L. A.; Park, Y. S.; McDaniel, H.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Controlled alloying of the core–shell interface in CdSe/CdS quantum dots for suppression of auger recombination. ACS Nano 2013, 7, 3411–3419.

24

Boldt, K.; Kirkwood, N.; Beane, G. A.; Mulvaney, P. Synthesis of highly luminescent and photo-stable, graded shell CdSe/CdxZn1−xS nanoparticles by in situ alloying. Chem. Mater. 2013, 25, 4731–4738.

25

Regulacio, M. D.; Han, M. Y. Composition-tunable alloyed semiconductor nanocrystals. Acc. Chem. Res. 2010, 43, 621–630.

26

Swafford, L. A.; Weigand, L. A.; Bowers, M. J.; McBride, J. R.; Rapaport, J. L.; Watt, T. L.; Dixit, S. K.; Feldman, L. C.; Rosenthal, S. J. Homogeneously alloyed CdSxSe1−x nanocrystals: Synthesis, characterization, and composition/size-dependent band gap. J. Am. Chem. Soc. 2006, 128, 12299–12306.

27

Cai, M. K.; Li, X.; Zhao, H. Y.; Liu, C.; You, Y. M.; Lin, F.; Tong, X.; Wang, Z. M. Decoration of BiVO4 photoanodes with near-infrared quantum dots for boosted photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 2021, 13, 50046–50056.

28

Debnath, T.; Ghosh, H. N. Recent progress of electron storage Mn center in doped nanocrystals. J. Phys. Chem. C 2019, 123, 10703–10719.

29

Wang, J.; Li, Y.; Shen, Q.; Izuishi, T.; Pan, Z. X.; Zhao, K.; Zhong, X. H. Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%. J. Mater. Chem. A 2016, 4, 877–886.

30

Debnath, T.; Maiti, S.; Ghosh, H. N. Unusually slow electron cooling to charge-transfer state in gradient cdtese alloy nanocrystals mediated through Mn atom. J. Phys. Chem. Lett. 2016, 7, 1359–1367.

31

Wang, G. S.; Wei, H. Y.; Luo, Y. H.; Wu, H. J.; Li, D. M.; Zhong, X. H.; Meng, Q. B. A strategy to boost the cell performance of CdSexTe1−x quantum dot sensitized solar cells over 8% by introducing Mn modified CdSe coating layer. J. Power Sources 2016, 302, 266–273.

32

Debnath, T.; Parui, K.; Maiti, S.; Ghosh, H. N. An insight into the interface through excited-state carrier dynamics for promising enhancement of power conversion efficiency in a Mn-doped cdznsse gradient alloy. Chem.—Eur. J. 2017, 23, 3755–3763.

33

Santra, P. K.; Kamat, P. V. Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%. J. Am. Chem. Soc. 2012, 134, 2508–2511.

34

Zhao, Y. J.; Zunger, A. Electronic structure and ferromagnetism of Mn-substituted CuAlS2, CuGaS2, CuInS2, CuGaSe2, and CuGaTe2. Phys. Rev. B 2004, 69, 104422.

35

Yao, J. L.; Brunetta, C. D.; Aitken, J. A. Suppression of antiferromagnetic interactions through Cu vacancies in Mn-substituted CuInSe2 chalcopyrites. J. Phys. Condens. Matter 2012, 24, 086006.

36

Prabukanthan, P.; Dhanasekaran, R. Influence of Mn doping on CuGaS2 single crystals grown by CVT method and their characterization. J. Phys. D Appl. Phys. 2008, 41, 115102.

37

Yao, J. L.; Wang, Z. X.; Van Tol, J.; Dalal, N. S.; Aitken, J. A. Site preference of manganese on the copper site in Mn-substituted CuInSe2 chalcopyrites revealed by a combined neutron and X-ray powder diffraction study. Chem. Mater. 2010, 22, 1647–1655.

38

Pu, C. D.; Zhou, J. H.; Lai, R. C.; Niu, Y.; Nan, W. N.; Peng, X. G. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS). Nano Res. 2013, 6, 652–670.

39

Liu, Q. H.; Deng, R. P.; Ji, X. L.; Pan, D. C. Alloyed Mn-Cu-In-S nanocrystals: A new type of diluted magnetic semiconductor quantum dots. Nanotechnology 2012, 23, 255706.

40

Battaglia, D.; Blackman, B.; Peng, X. G. Coupled and decoupled dual quantum systems in one semiconductor nanocrystal. J. Am. Chem. Soc. 2005, 127, 10889–10897.

41

Pan, D. C.; An, L. J.; Sun, Z. M.; Hou, W.; Yang, Y.; Yang, Z. Z.; Lu, Y. F. Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J. Am. Chem. Soc. 2008, 130, 5620–5621.

42

Skinner, W. M.; Prestidge, C. A.; Smart, R. S. C. Irradiation effects during XPS studies of Cu(ii) activation of zinc sulphide. Surf. Interface Anal. 1996, 24, 620–626.

43

Lox, J. F. L.; Dang, Z. Y.; Dzhagan, V. M.; Spittel, D.; Martín-García, B.; Moreels, I.; Zahn, D. R. T.; Lesnyak, V. Near-infrared Cu-In-Se-based colloidal nanocrystals via cation exchange. Chem. Mater. 2018, 30, 2607–2617.

44

Liu, F.; Zhu, J.; Xu, Y. F.; Zhou, L.; Dai, S. Y. Scalable noninjection phosphine-free synthesis and optical properties of tetragonal-phase CuInSe2 quantum dots. Nanoscale 2016, 8, 10021–10025.

45

Zhao, H. Y.; Li, X.; Cai, M. K.; Liu, C.; You, Y. M.; Wang, R.; Channa, A. I.; Lin, F.; Huo, D.; Xu, G. F. et al. Role of copper doping in heavy metal‐free InP/ZnSe core/shell quantum dots for highly efficient and stable photoelectrochemical cell. Adv. Energy Mater. 2021, 11, 2101230.

46

Canava, B.; Vigneron, J.; Etcheberry, A.; Guillemoles, J. F.; Lincot, D. High resolution XPS studies of Se chemistry of a Cu(In, Ga)Se2 surface. Appl. Surf. Sci. 2002, 202, 8–14.

47

McGee, T. F.; Cornelissen, H. J. X-ray photoelectron spectroscopy of etched znse. Appl. Surf. Sci. 1989, 35, 371–379.

48

Guo, R. Q.; Meng, J.; Lin, W. H.; Liu, A. Q.; Pullerits, T.; Zheng, K. B.; Tian, J. J. Manganese doped eco-friendly CuInSe2 colloidal quantum dots for boosting near-infrared photodetection performance. Chem. Eng. J. 2021, 403, 126452.

49

Malik, M. A.; O'Brien, P.; Revaprasadu, N. A novel route for the preparation of cuse and CuInSe2 nanoparticles. Adv. Mater. 1999, 11, 1441–1444.

50

Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.

51

Li, X.; Tong, X.; Yue, S.; Liu, C.; Channa, A. I.; You, Y. M.; Wang, R.; Long, Z. H.; Zhang, Z. M.; Zhao, Z. H. et al. Rational design of colloidal AgGaS2/CdSeS core/shell quantum dots for solar energy conversion and light detection. Nano Energy 2021, 89, 106392.

52

Long, Z. H.; Tong, X.; Liu, C.; Channa, A. I.; Wang, R.; Li, X.; Lin, F.; Vomiero, A.; Wang, Z. M. Near-infrared, eco-friendly ZnAgInSe quantum dots-sensitized graphene oxide-TiO2 hybrid photoanode for high performance photoelectrochemical hydrogen generation. Chem. Eng. J. 2021, 426, 131298.

53

Selopal, G. S.; Zhao, H. G.; Liu, G. J.; Zhang, H.; Tong, X.; Wang, K. H.; Tang, J.; Sun, X. H.; Sun, S. H.; Vidal, F. et al. Interfacial engineering in colloidal “giant” quantum dots for high-performance photovoltaics. Nano Energy 2019, 55, 377–388.

54

James, D. R.; Liu, Y. S.; De Mayo, P.; Ware, W. R. Distributions of fluorescence lifetimes: Consequences for the photophysics of molecules adsorbed on surfaces. Chem. Phys. Lett. 1985, 120, 460–465.

55

Adhikari, R.; Jin, L.; Navarro-Pardo, F.; Benetti, D.; AlOtaibi, B.; Vanka, S.; Zhao, H. G.; Mi, Z. T.; Vomiero, A.; Rosei, F. High efficiency, Pt-free photoelectrochemical cells for solar hydrogen generation based on “giant” quantum dots. Nano Energy 2016, 27, 265–274.

56

McDaniel, H.; Fuke, N.; Makarov, N. S.; Pietryga, J. M.; Klimov, V. I. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells. Nat. Commun. 2013, 4, 2887.

57

Wu, Y.; Liu, X. Q.; Zhang, H. J.; Li, J.; Zhou, M.; Li, L.; Wang, Y. Atomic sandwiched p-n homojunctions. Angew. Chem. , Int. Ed. 2021, 60, 3487–3492.

58

Zhu, J. H.; Feng, Y. G.; Wang, A. J.; Mei, L. P.; Luo, X. L.; Feng, J. J. A signal-on photoelectrochemical aptasensor for chloramphenicol assay based on 3D self-supporting AgI/Ag/BiOI Z-scheme heterojunction arrays. Biosens. Bioelectron. 2021, 181, 113158.

Nano Research
Pages 7614-7621
Cite this article:
Wang R, Tong X, Long Z, et al. Rational design of eco-friendly Mn-doped nonstoichiometric CuInSe/ZnSe core/shell quantum dots for boosted photoelectrochemical efficiency. Nano Research, 2022, 15(8): 7614-7621. https://doi.org/10.1007/s12274-022-4334-2
Topics:

1060

Views

20

Crossref

19

Web of Science

19

Scopus

3

CSCD

Altmetrics

Received: 18 February 2022
Revised: 09 March 2022
Accepted: 15 March 2022
Published: 31 May 2022
© Tsinghua University Press 2022
Return