Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Colloidal core/shell quantum dots (QDs) with environment-friendly feature and controllable optoelectronic properties are promising building blocks in emerging solar technologies. In this work, we rationally design and tailor the eco-friendly CuInSe (CISe)/ZnSe core/shell QDs by Mn doping and stoichiometric optimization (i.e., molar ratios of Cu/In). It is demonstrated that Mn doping in In-rich CISe/ZnSe core/shell QDs can effectively engineer the charge kinetics inside the QDs, enabling efficient photogenerated electrons transfer into the shell for retarded charge recombination. As a result, a solar-driven photoelectrochemical (PEC) device fabricated using the optimized Mn-doped In-rich CISe/ZnSe core/shell QDs (Cu/In ratio of 1/2) exhibits improved charge extraction and injection, showing a ~ 3.5-fold higher photocurrent density than that of the pristine CISe/ZnSe core/shell QDs under 1 sun AM 1.5G illumination. The findings indicate that transition metal doping in “green” nonstoichiometric core/shell QDs may offer a new strategy for achieving high-efficiency solar energy conversion applications.
Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771.
De Arquer, F. P. G.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.
Huang, X. L.; Tong, X.; Wang, Z. M. Rational design of colloidal core/shell quantum dots for optoelectronic applications. J. Electron. Sci. Technol. 2020, 18, 100018.
Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803.
Tang, J.; Sargent, E. H. Infrared colloidal quantum dots for photovoltaics: Fundamentals and recent progress. Adv. Mater. 2011, 23, 12–29.
Jin, L.; Zhao, H. G.; Wang, Z. M.; Rosei, F. Quantum dots-based photoelectrochemical hydrogen evolution from water splitting. Adv. Energy Mater. 2021, 11, 2003233.
Ren, S. H.; Wang, M. R.; Wang, X. H.; Han, G. T.; Zhang, Y. M.; Zhao, H. G.; Vomiero, A. Near-infrared heavy-metal-free snse/znse quantum dots for efficient photoelectrochemical hydrogen generation. Nanoscale 2021, 13, 3519–3527.
Livache, C.; Martinez, B.; Goubet, N.; Gréboval, C.; Qu, J. L.; Chu, A.; Royer, S.; Ithurria, S.; Silly, M. G.; Dubertret, B. et al. A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat. Commun. 2019, 10, 2125.
Zhang, B.; Zhang, S. X.; Yao, R.; Wu, Y. H.; Qiu, J. S. Progress and prospects of hydrogen production: Opportunities and challenges. J. Electron. Sci. Technol. 2021, 19, 100080.
Wang, X. H.; Wang, M. R.; Liu, G. J.; Zhang, Y. M.; Han, G. T.; Vomiero, A.; Zhao, H. G. Colloidal carbon quantum dots as light absorber for efficient and stable ecofriendly photoelectrochemical hydrogen generation. Nano Energy 2021, 86, 106122.
Ahn, H. J.; Kim, M. J.; Kim, K.; Kwak, M. J.; Jang, J. H. Optimization of quantum dot-sensitized photoelectrode for realization of visible light hydrogen generation. Small 2014, 10, 2325–2330.
Jin, L.; AlOtaibi, B.; Benetti, D.; Li, S.; Zhao, H. G.; Mi, Z. T.; Vomiero, A.; Rosei, F. Near-infrared colloidal quantum dots for efficient and durable photoelectrochemical solar-driven hydrogen production. Adv. Sci. 2016, 3, 1500345.
Trevisan, R.; Rodenas, P.; Gonzalez-Pedro, V.; Sima, C.; Sanchez, R. S.; Barea, E. M.; Mora-Sero, I.; Fabregat-Santiago, F.; Gimenez, S. Harnessing infrared photons for photoelectrochemical hydrogen generation. A PbS quantum dot based “quasi-artificial leaf”. J. Phys. Chem. Lett. 2013, 4, 141–146.
Luo, J. S.; Karuturi, S. K.; Liu, L. J.; Su, L. T.; Tok, A. I. Y.; Fan, H. J. Homogeneous photosensitization of complex TiO2 nanostructures for efficient solar energy conversion. Sci. Rep. 2012, 2, 451.
Xu, J. Y.; Tong, X.; Besteiro, L. V.; Li, X.; Hu, C. X.; Liu, R. T.; Channa, A. I.; Zhao, H. G.; Rosei, F.; Govorov, A. O. et al. Rational synthesis of novel “giant” CuInTeSe/CdS core/shell quantum dots for optoelectronics. Nanoscale 2021, 13, 15301–15310.
Du, J.; Du, Z. L.; Hu, J. S.; Pan, Z. X.; Shen, Q.; Sun, J. K.; Long, D. H.; Dong, H.; Sun, L. T.; Zhong, X. H. et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J. Am. Chem. Soc. 2016, 138, 4201–4209.
Yarema, O.; Bozyigit, D.; Rousseau, I.; Nowack, L.; Yarema, M.; Heiss, W.; Wood, V. Highly luminescent, size-and shape-tunable copper indium selenide based colloidal nanocrystals. Chem. Mater. 2013, 25, 3753–3757.
Witt, E.; Kolny-Olesiak, J. Recent developments in colloidal synthesis of CuInSe2 nanoparticles. Chem.—Eur. J. 2013, 19, 9746–9753.
Regmi, G.; Ashok, A.; Chawla, P.; Semalti, P.; Velumani, S.; Sharma, S. N.; Castaneda, H. Perspectives of chalcopyrite-based CIGSe thin-film solar cell: A review. J. Mater. Sci. Mater. Electron. 2020, 31, 7286–7314.
Tong, X.; Zhou, Y. F.; Jin, L.; Basu, K.; Adhikari, R.; Selopal, G. S.; Tong, X.; Zhao, H. G.; Sun, S. H.; Vomiero, A. et al. Heavy metal-free, near-infrared colloidal quantum dots for efficient photoelectrochemical hydrogen generation. Nano Energy 2017, 31, 441–449.
Du, J.; Singh, R.; Fedin, I.; Fuhr, A. S.; Klimov, V. I. Spectroscopic insights into high defect tolerance of Zn: CuInSe2 quantum-dot-sensitized solar cells. Nat. Energy 2020, 5, 409–417.
Tong, X.; Kong, X. T.; Zhou, Y. F.; Navarro-Pardo, F.; Selopal, G. S.; Sun, S. H.; Govorov, A. O.; Zhao, H. G.; Wang, Z. M.; Rosei, F. Near-infrared, heavy metal-free colloidal “giant” core/shell quantum dots. Adv. Energy Mater. 2018, 8, 1701432.
Bae, W. K.; Padilha, L. A.; Park, Y. S.; McDaniel, H.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Controlled alloying of the core–shell interface in CdSe/CdS quantum dots for suppression of auger recombination. ACS Nano 2013, 7, 3411–3419.
Boldt, K.; Kirkwood, N.; Beane, G. A.; Mulvaney, P. Synthesis of highly luminescent and photo-stable, graded shell CdSe/CdxZn1−xS nanoparticles by in situ alloying. Chem. Mater. 2013, 25, 4731–4738.
Regulacio, M. D.; Han, M. Y. Composition-tunable alloyed semiconductor nanocrystals. Acc. Chem. Res. 2010, 43, 621–630.
Swafford, L. A.; Weigand, L. A.; Bowers, M. J.; McBride, J. R.; Rapaport, J. L.; Watt, T. L.; Dixit, S. K.; Feldman, L. C.; Rosenthal, S. J. Homogeneously alloyed CdSxSe1−x nanocrystals: Synthesis, characterization, and composition/size-dependent band gap. J. Am. Chem. Soc. 2006, 128, 12299–12306.
Cai, M. K.; Li, X.; Zhao, H. Y.; Liu, C.; You, Y. M.; Lin, F.; Tong, X.; Wang, Z. M. Decoration of BiVO4 photoanodes with near-infrared quantum dots for boosted photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 2021, 13, 50046–50056.
Debnath, T.; Ghosh, H. N. Recent progress of electron storage Mn center in doped nanocrystals. J. Phys. Chem. C 2019, 123, 10703–10719.
Wang, J.; Li, Y.; Shen, Q.; Izuishi, T.; Pan, Z. X.; Zhao, K.; Zhong, X. H. Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%. J. Mater. Chem. A 2016, 4, 877–886.
Debnath, T.; Maiti, S.; Ghosh, H. N. Unusually slow electron cooling to charge-transfer state in gradient cdtese alloy nanocrystals mediated through Mn atom. J. Phys. Chem. Lett. 2016, 7, 1359–1367.
Wang, G. S.; Wei, H. Y.; Luo, Y. H.; Wu, H. J.; Li, D. M.; Zhong, X. H.; Meng, Q. B. A strategy to boost the cell performance of CdSexTe1−x quantum dot sensitized solar cells over 8% by introducing Mn modified CdSe coating layer. J. Power Sources 2016, 302, 266–273.
Debnath, T.; Parui, K.; Maiti, S.; Ghosh, H. N. An insight into the interface through excited-state carrier dynamics for promising enhancement of power conversion efficiency in a Mn-doped cdznsse gradient alloy. Chem.—Eur. J. 2017, 23, 3755–3763.
Santra, P. K.; Kamat, P. V. Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%. J. Am. Chem. Soc. 2012, 134, 2508–2511.
Zhao, Y. J.; Zunger, A. Electronic structure and ferromagnetism of Mn-substituted CuAlS2, CuGaS2, CuInS2, CuGaSe2, and CuGaTe2. Phys. Rev. B 2004, 69, 104422.
Yao, J. L.; Brunetta, C. D.; Aitken, J. A. Suppression of antiferromagnetic interactions through Cu vacancies in Mn-substituted CuInSe2 chalcopyrites. J. Phys. Condens. Matter 2012, 24, 086006.
Prabukanthan, P.; Dhanasekaran, R. Influence of Mn doping on CuGaS2 single crystals grown by CVT method and their characterization. J. Phys. D Appl. Phys. 2008, 41, 115102.
Yao, J. L.; Wang, Z. X.; Van Tol, J.; Dalal, N. S.; Aitken, J. A. Site preference of manganese on the copper site in Mn-substituted CuInSe2 chalcopyrites revealed by a combined neutron and X-ray powder diffraction study. Chem. Mater. 2010, 22, 1647–1655.
Pu, C. D.; Zhou, J. H.; Lai, R. C.; Niu, Y.; Nan, W. N.; Peng, X. G. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS). Nano Res. 2013, 6, 652–670.
Liu, Q. H.; Deng, R. P.; Ji, X. L.; Pan, D. C. Alloyed Mn-Cu-In-S nanocrystals: A new type of diluted magnetic semiconductor quantum dots. Nanotechnology 2012, 23, 255706.
Battaglia, D.; Blackman, B.; Peng, X. G. Coupled and decoupled dual quantum systems in one semiconductor nanocrystal. J. Am. Chem. Soc. 2005, 127, 10889–10897.
Pan, D. C.; An, L. J.; Sun, Z. M.; Hou, W.; Yang, Y.; Yang, Z. Z.; Lu, Y. F. Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J. Am. Chem. Soc. 2008, 130, 5620–5621.
Skinner, W. M.; Prestidge, C. A.; Smart, R. S. C. Irradiation effects during XPS studies of Cu(ii) activation of zinc sulphide. Surf. Interface Anal. 1996, 24, 620–626.
Lox, J. F. L.; Dang, Z. Y.; Dzhagan, V. M.; Spittel, D.; Martín-García, B.; Moreels, I.; Zahn, D. R. T.; Lesnyak, V. Near-infrared Cu-In-Se-based colloidal nanocrystals via cation exchange. Chem. Mater. 2018, 30, 2607–2617.
Liu, F.; Zhu, J.; Xu, Y. F.; Zhou, L.; Dai, S. Y. Scalable noninjection phosphine-free synthesis and optical properties of tetragonal-phase CuInSe2 quantum dots. Nanoscale 2016, 8, 10021–10025.
Zhao, H. Y.; Li, X.; Cai, M. K.; Liu, C.; You, Y. M.; Wang, R.; Channa, A. I.; Lin, F.; Huo, D.; Xu, G. F. et al. Role of copper doping in heavy metal‐free InP/ZnSe core/shell quantum dots for highly efficient and stable photoelectrochemical cell. Adv. Energy Mater. 2021, 11, 2101230.
Canava, B.; Vigneron, J.; Etcheberry, A.; Guillemoles, J. F.; Lincot, D. High resolution XPS studies of Se chemistry of a Cu(In, Ga)Se2 surface. Appl. Surf. Sci. 2002, 202, 8–14.
McGee, T. F.; Cornelissen, H. J. X-ray photoelectron spectroscopy of etched znse. Appl. Surf. Sci. 1989, 35, 371–379.
Guo, R. Q.; Meng, J.; Lin, W. H.; Liu, A. Q.; Pullerits, T.; Zheng, K. B.; Tian, J. J. Manganese doped eco-friendly CuInSe2 colloidal quantum dots for boosting near-infrared photodetection performance. Chem. Eng. J. 2021, 403, 126452.
Malik, M. A.; O'Brien, P.; Revaprasadu, N. A novel route for the preparation of cuse and CuInSe2 nanoparticles. Adv. Mater. 1999, 11, 1441–1444.
Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.
Li, X.; Tong, X.; Yue, S.; Liu, C.; Channa, A. I.; You, Y. M.; Wang, R.; Long, Z. H.; Zhang, Z. M.; Zhao, Z. H. et al. Rational design of colloidal AgGaS2/CdSeS core/shell quantum dots for solar energy conversion and light detection. Nano Energy 2021, 89, 106392.
Long, Z. H.; Tong, X.; Liu, C.; Channa, A. I.; Wang, R.; Li, X.; Lin, F.; Vomiero, A.; Wang, Z. M. Near-infrared, eco-friendly ZnAgInSe quantum dots-sensitized graphene oxide-TiO2 hybrid photoanode for high performance photoelectrochemical hydrogen generation. Chem. Eng. J. 2021, 426, 131298.
Selopal, G. S.; Zhao, H. G.; Liu, G. J.; Zhang, H.; Tong, X.; Wang, K. H.; Tang, J.; Sun, X. H.; Sun, S. H.; Vidal, F. et al. Interfacial engineering in colloidal “giant” quantum dots for high-performance photovoltaics. Nano Energy 2019, 55, 377–388.
James, D. R.; Liu, Y. S.; De Mayo, P.; Ware, W. R. Distributions of fluorescence lifetimes: Consequences for the photophysics of molecules adsorbed on surfaces. Chem. Phys. Lett. 1985, 120, 460–465.
Adhikari, R.; Jin, L.; Navarro-Pardo, F.; Benetti, D.; AlOtaibi, B.; Vanka, S.; Zhao, H. G.; Mi, Z. T.; Vomiero, A.; Rosei, F. High efficiency, Pt-free photoelectrochemical cells for solar hydrogen generation based on “giant” quantum dots. Nano Energy 2016, 27, 265–274.
McDaniel, H.; Fuke, N.; Makarov, N. S.; Pietryga, J. M.; Klimov, V. I. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells. Nat. Commun. 2013, 4, 2887.
Wu, Y.; Liu, X. Q.; Zhang, H. J.; Li, J.; Zhou, M.; Li, L.; Wang, Y. Atomic sandwiched p-n homojunctions. Angew. Chem. , Int. Ed. 2021, 60, 3487–3492.
Zhu, J. H.; Feng, Y. G.; Wang, A. J.; Mei, L. P.; Luo, X. L.; Feng, J. J. A signal-on photoelectrochemical aptasensor for chloramphenicol assay based on 3D self-supporting AgI/Ag/BiOI Z-scheme heterojunction arrays. Biosens. Bioelectron. 2021, 181, 113158.