AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Motivating Ru-bri site of RuO2 by boron doping toward high performance acidic and neutral oxygen evolution

Chongjing Liu1,§Beibei Sheng1,2,§Quan Zhou1,§Dengfeng Cao1,2Honghe Ding1Shuangming Chen1( )Pengjun Zhang1Yujian Xia1Xiaojun Wu3Li Song1,2
National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, China
Institute of Energy, Hefei Comprehensive Nation Science Center, Hefei 230031, China
Hefei National Laboratory for Physical Sciences at the Microscales, Department of Materials Sciences and Engineering, University of Science and Technology of China, Hefei 230026, China

§ Chongjing Liu, Beibei Sheng, and Quan Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

The anomalous B−O bonding formed by boron doping of RuO2 motivates the inactive Ru-bri site into OER-active and thus greatly improves the performances of acidic and neutral OER.

Abstract

The electrocatalysis of oxygen evolution reaction (OER) plays a key role in clean energy storage and transfer. Nonetheless, the sluggish kinetics and poor durability under acidic and neutral conditions severely hinder practical applications such as electrolyzer compatible with the powerful proton exchange membrane and biohybrid fuel production. Here, we report a boron-doped ruthenium dioxide electrocatalyst (B-RuO2) fabricated by a facile boric acid assisted strategy which demonstrates excellent acidic and neutral OER performances. Density functional theory calculations and advanced characterizations reveal that the boron species form an anomalous B–O covalent bonding with the oxygen atoms of RuO2 and expose the fully coordinately bridge ruthenium site (Ru-bri site), which seems like a switch that turns on the inactive Ru-bri site into OER-active, resulting in more exposed active sites, modified electronic structure, and optimized binding energy of intermediates. Thus, the B-RuO2 exhibits an ultralow overpotential of 200 mV at 10 mA/cm2 and maintains excellent stability compared to commercial RuO2 in 0.5 M sulfuric acid. Moreover, the superior performance is as well displayed in neutral electrolyte, surpassing most previously reported catalysts.

Electronic Supplementary Material

Download File(s)
12274_2022_4337_MOESM1_ESM.pdf (4.9 MB)

References

1

Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

2

Park, S.; Shao, Y. Y.; Liu, J.; Wang, Y. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: Status and perspective. Energy Environ. Sci. 2012, 5, 9331–9344.

3

Lebedev, D.; Povia, M.; Waltar, K.; Abdala, P. M.; Castelli, I. E.; Fabbri, E.; Blanco, M. V.; Fedorov, A.; Copéret, C.; Marzari, N. et al. Highly active and stable iridium pyrochlores for oxygen evolution reaction. Chem. Mater. 2017, 29, 5182–5191.

4

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

5

Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934.

6

Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260.

7

Albert, A.; Barnett, A. O.; Thomassen, M. S.; Schmidt, T. J.; Gubler, L. Radiation-grafted polymer electrolyte membranes for water electrolysis cells: Evaluation of key membrane properties. ACS Appl. Mater. Interfaces 2015, 7, 22203–22212.

8

Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

9

Li, Y.; Li, F. M.; Meng, X. Y.; Li, S. N.; Zeng, J. H.; Chen, Y. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal. 2018, 8, 1913–1920.

10

Xu, X. M.; Su, C.; Zhou, W.; Zhu, Y. L.; Chen, Y. B.; Shao, Z. P. Co-doping strategy for developing perovskite oxides as highly efficient electrocatalysts for oxygen evolution reaction. Adv. Sci. 2016, 3, 1500187.

11

Huang, L. L.; Chen, D. W.; Luo, G.; Lu, Y. R.; Chen, C.; Zou, Y. Q.; Dong, C. L.; Li, Y. F.; Wang, S. Y. Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting. Adv. Mater. 2019, 31, 1901439.

12

Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134.

13

Xu, X. M.; Pan, Y. L.; Zhong, Y. J.; Ran, R.; Shao, Z. P. Ruddlesden-Popper perovskites in electrocatalysis. Mater. Horiz. 2020, 7, 2519–2565.

14

Feng, J. R.; Lv, F.; Zhang, W. Y.; Li, P. H.; Wang, K.; Yang, C.; Wang, B.; Yang, Y.; Zhou, J. H.; Lin, F. et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis. Adv. Mater. 2017, 29, 1703798.

15

Zhang, L. J.; Jang, H.; Li, Z. J.; Liu, H. H.; Kim, M. G.; Liu, X. E.; Cho, J. SrIrO3 modified with laminar Sr2IrO4 as a robust bifunctional electrocatalyst for overall water splitting in acidic media. Chem. Eng. J. 2021, 419, 129604.

16

Guo, H. Y.; Fang, Z. W.; Li, H.; Fernandez, D.; Henkelman, G.; Humphrey, S. M.; Yu, G. H. Rational design of rhodium-iridium alloy nanoparticles as highly active catalysts for acidic oxygen evolution. ACS Nano 2019, 13, 13225–13234.

17

Laha, S.; Lee, Y.; Podjaski, F.; Weber, D.; Duppel, V.; Schoop, L. M.; Pielnhofer, F.; Scheurer, C.; Müller, K.; Starke, U. et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Energy Mater. 2019, 9, 1803795.

18

Liang, X.; Shi, L.; Cao, R.; Wan, G.; Yan, W. S.; Chen, H.; Liu, Y. P.; Zou, X. X. Perovskite-type solid solution nano-electrocatalysts enable simultaneously enhanced activity and stability for oxygen evolution. Adv. Mater. 2020, 32, 2001430.

19

Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

20

Exner, K. S.; Sohrabnejad-Eskan, I.; Over, H. A universal approach to determine the free energy diagram of an electrocatalytic reaction. ACS Catal. 2018, 8, 1864–1879.

21

Xu, Y. M.; Fan, K. C.; Zou, Y.; Fu, H. Q.; Dong, M. Y.; Dou, Y. H.; Wang, Y.; Chen, S.; Yin, H. J.; Al-Mamun, M. et al. Rational design of metal oxide catalysts for electrocatalytic water splitting. Nanoscale 2021, 13, 20324–20353.

22

Hao, S. Y.; Liu, M.; Pan, J. J.; Liu, X. N.; Tan, X. L.; Xu, N.; He, Y.; Lei, L. C.; Zhang, X. W. Dopants fixation of ruthenium for boosting acidic oxygen evolution stability and activity. Nat. Commun. 2020, 11, 5368.

23

Su, J. W.; Ge, R. X.; Jiang, K. M.; Dong, Y.; Hao, F.; Tian, Z. Q.; Chen, G. X.; Chen, L. Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: Highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2018, 30, 1801351.

24

Chen, S.; Huang, H.; Jiang, P.; Yang, K.; Diao, J. F.; Gong, S. P.; Liu, S.; Huang, M. X.; Wang, H.; Chen, Q. W. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal. 2020, 10, 1152–1160.

25

Tian, Y. Y.; Wang, S.; Velasco, E.; Yang, Y. O.; Cao, L. J.; Zhang, L. J.; Li, X.; Lin, Y. C.; Zhang, Q. J.; Chen, L. A Co-doped nanorod-like RuO2 electrocatalyst with abundant oxygen vacancies for acidic water oxidation. iScience 2020, 23, 100756.

26

Zaman, W. Q.; Sun, W.; Tariq, M.; Zhou, Z. H.; Farooq, U.; Abbas, Z.; Cao, L. M.; Yang, J. Iridium substitution in nickel cobaltite renders high mass specific OER activity and durability in acidic media. Appl. Catal. B:Environ. 2019, 244, 295–302.

27

Cao, D. F.; Moses, O. A.; Sheng, B. B.; Chen, S. M.; Pan, H. B.; Wu, L. H.; Shou, H. W.; Xu, W. J.; Li, D. D.; Zheng, L. R. et al. Anomalous self-optimization of sulfate ions for boosted oxygen evolution reaction. Sci. Bull. 2021, 66, 553–561.

28

Gao, Q.; Huang, C. Q.; Ju, Y. M.; Gao, M. R.; Liu, J. W.; An, D.; Cui, C. H.; Zheng, Y. R.; Li, W. X.; Yu, S. H. Phase-selective syntheses of cobalt telluride nanofleeces for efficient oxygen evolution catalysts. Angew. Chem. , Int. Ed. 2017, 56, 7769–7773.

29

Nsanzimana, J. M. V.; Peng, Y. C.; Xu, Y. Y.; Thia, L.; Wang, C.; Xia, B. Y.; Wang, X. An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv. Energy Mater. 2018, 8, 1701475.

30

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

31

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

32

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Compt. Mater. Sci. 1996, 6, 15–50.

33

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

34

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

35

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

36

Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

37

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

38

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

39

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

40

Ge, R. X.; Li, L.; Su, J. W.; Lin, Y. C.; Tian, Z. Q.; Chen, L. Ultrafine defective RuO2 electrocatayst integrated on carbon cloth for robust water oxidation in acidic media. Adv. Energy Mater. 2019, 9, 1901313.

41

Gao, J. J.; Xu, C. Q.; Hung, S. F.; Liu, W.; Cai, W. Z.; Zeng, Z. P.; Jia, C. M.; Chen, H. M.; Xiao, H.; Li, J. et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J. Am. Chem. Soc. 2019, 141, 3014–3023.

42

Guo, F. F.; Wu, Y. Y.; Chen, H.; Liu, Y. P.; Yang, L.; Ai, X.; Zou, X. X. High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces. Energy Environ. Sci. 2019, 12, 684–692.

43

Balachander, L.; Ramadevudu, G.; Shareefuddin, M.; Sayanna, R.; Venudhar, Y. C. IR analysis of borate glasses containing three alkali oxides. ScienceAsia 2013, 39, 278.

44

Spöri, C.; Kwan, J. T. H.; Bonakdarpour, A.; Wilkinson, D. P.; Strasser, P. The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem., Int. Ed. 2017, 56, 5994–6021.

45

Ge, J. J.; He, D. S.; Chen, W. X.; Ju, H. X.; Zhang, H.; Chao, T. T.; Wang, X. Q.; You, R.; Lin, Y.; Wang, Y. et al. Atomically dispersed Ru on ultrathin Pd nanoribbons. J. Am. Chem. Soc. 2016, 138, 13850–13853.

46

Zhang, L. J.; Jang, H.; Liu, H. H.; Kim, M. G.; Yang, D. J.; Liu, S. G.; Liu, X. E.; Cho, J. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust pH-universal oxygen evolution electrocatalyst. Angew. Chem., Int. Ed. 2021, 133, 18969–18977.

Nano Research
Pages 7008-7015
Cite this article:
Liu C, Sheng B, Zhou Q, et al. Motivating Ru-bri site of RuO2 by boron doping toward high performance acidic and neutral oxygen evolution. Nano Research, 2022, 15(8): 7008-7015. https://doi.org/10.1007/s12274-022-4337-z
Topics:

1201

Views

34

Crossref

32

Web of Science

33

Scopus

1

CSCD

Altmetrics

Received: 18 January 2022
Revised: 04 March 2022
Accepted: 17 March 2022
Published: 05 May 2022
© Tsinghua University Press 2022
Return