Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Liquid crystal-nanoparticle composite systems have attracted particular attention for both academic interests and applications in inducing macroscopic alignment, altering electro-optic response of the liquid crystal hosts, and generating ordered, tunable soft metamaterials. Herein, the synthesis of two shapes of CuInS2 nanoparticles, tremelliform-like CuInS2 and frame-like CuInS2, and their utilization in producing uniform homeotropic alignment of liquid crystals are reported. Through exploring the mechanism in detail, the crystal structures of CuInS2 nanoparticles were found to rely heavily on the reaction solvents during the growth process, which in turn play a significant role on the anchor of liquid crystal molecules. The achieved homeotropic alignment shows high thermal stability, owing to the outstanding stability of the CuInS2 nanoparticles. In addition, combining this feasible method with parallel-aligning technique, variable pretilt angles in a range of ~ 0.9º to ~ 7.2º could be continuously achieved.
Ishihara, S.; Mizusaki, M. Alignment control technology of liquid crystal molecules. J. Soc. Inf. Disp. 2020, 28, 44–74.
Artyushkova, K.; Pylypenko, S. Application of surface analysis methods to study alignment mechanism and orientation of liquid crystals. J. Mol. Liq. 2018, 267, 542–549.
Song, I. H.; Jeong, H. C.; Lee, J. H.; Won, J.; Kim, D. H.; Lee, D. W.; Oh, J. Y.; Jang, J. I.; Liu, Y.; Seo, D. S. Selective liquid crystal driving mode achieved by controlling the pretilt angle via a nanopatterned organic/inorganic hybrid thin film. Adv. Opt. Mater. 2021, 9, 2001639.
Chen, M. Z.; Yang, S. H.; Jeng, S. C. Growth of ZnO nanorods and their applications for liquid crystal devices. ACS Appl. Nano Mater. 2018, 1, 1879–1885.
Liu, B. Y.; Meng, C. H.; Chen, L. J. Role of monomer alkyl chain length in pretilt angle control of polymer-stabilized liquid crystal alignment system. J. Phys. Chem. C 2017, 121, 21037–21044.
Toney, M. F.; Russell, T. P.; Logan, J. A.; Kikuchi, H.; Sands, J. M.; Kumar, S. K. Near-surface alignment of polymers in rubbed films. Nature 1995, 374, 709–711.
Gibbons, W. M.; Shannon, P. J.; Sun, S. T.; Swetlin, B. J. Surface-mediated alignment of nematic liquid crystals with polarized laser light. Nature 1991, 351, 49–50.
Fukuhara, K.; Nagano, S.; Hara, M.; Seki, T. Free-surface molecular command systems for photoalignment of liquid crystalline materials. Nat. Commun. 2014, 5, 3320.
Kumar, V.; Ye, Z. Q.; Jiang, H. D.; Shi, Y.; Li, K.; Gérard, D.; Luo, D.; Mu, Q. Q.; Liu, Y. J. Highly stable, pretilted homeotropic alignment of liquid crystals enabled by in situ self-assembled, dual-wavelength photoalignment. ACS Appl. Electron. Mater. 2020, 2, 2017–2025.
Ishii, H.; Tetsutani, H.; Nagi, T. Improving liquid crystal alignment ability and UV sensitivity in photodecomposition polyimide film. J. Photopolym. Sci. Technol. 2019, 32, 553–558.
Zhao, D. Y.; Wang, Q.; Guo, L.; Yang, H. Controllable alignment of liquid crystals based on the surface relief gratings from a photocross-linkable organic monomer. Liq. Cryst. 2014, 41, 1510–1515.
Clare, B. H.; Guzmán, O.; De Pablo, J. J.; Abbott, N. L. Measurement of the azimuthal anchoring energy of liquid crystals in contact with oligo (ethylene glycol)-terminated self-assembled monolayers supported on obliquely deposited gold films. Langmuir 2006, 22, 4654–4659.
Chaudhari, P.; Lacey, J.; Doyle, J.; Galligan, E.; Lien, S. C. A.; Callegari, A.; Hougham, G.; Lang, N. D.; Andry, P. S.; John, R. et al. Atomic-beam alignment of inorganic materials for liquid-crystal displays. Nature 2001, 411, 56–59.
Liu, Y.; Lee, J. H.; Seo, D. S. Ion beam fabrication of aluminum-doped zinc oxide layer for high-performance liquid crystals alignment. Opt. Express 2016, 24, 17424–17432.
Liu, Y.; Lee, J. H.; Seo, D. S.; Li, X. D. Ion-beam-spurted dimethyl-sulfate-doped PEDOT: PSS composite-layer-aligning liquid crystal with low residual direct-current voltage. Appl. Phys. Lett. 2016, 109, 101901.
Gowda, A.; Kumar, S. Recent advances in discotic liquid crystal-assisted nanoparticles. Materials 2018, 11, 382.
Garbovskiy, Y. Nanomaterials in liquid crystals as ion-generating and ion-capturing objects. Crystals 2018, 8, 264.
Kumar, P.; Debnath, S.; Rao, N. V. S.; Sinha, A. Nanodoping: A route for enhancing electro-optic performance of bent core nematic system. J. Phys. :Condens. Matter 2018, 30, 095101.
Hwang, S. J.; Jeng, S. C.; Yang, C. Y.; Kuo, C. W.; Liao, C. C. Characteristics of nanoparticle-doped homeotropic liquid crystal devices. J. Phys. D:Appl. Phys. 2009, 42, 025102.
Kim, D. Y.; Kim, S.; Lee, S. A.; Choi, Y. E.; Yoon, W. J.; Kuo, S. W.; Hsu, C. H.; Huang, M. J.; Lee, S. H.; Jeong, K. U. Asymmetric organic-inorganic hybrid giant molecule: Cyanobiphenyl monosubstituted polyhedral oligomeric silsesquioxane nanoparticles for vertical alignment of liquid crystals. J. Phys. Chem. C 2014, 118, 6300–6306.
Huang, C. W.; Jeng, S. C. Polyhedral oligomeric silsesquioxane films for liquid crystal alignment. Colloids Interfaces 2018, 2, 9.
Qi, H.; Hegmann, T. Multiple alignment modes for nematic liquid crystals doped with alkylthiol-capped gold nanoparticles. ACS Appl. Mater. Interfaces 2009, 1, 1731–1738.
Zhou, W.; Lin, L. J.; Zhao, D. Y.; Guo, L. Synthesis of nickel bowl-like nanoparticles and their doping for inducing planar alignment of a nematic liquid crystal. J. Am. Chem. Soc. 2011, 133, 8389–8391.
Zhao, D. Y.; Zhou, W.; Cui, X. P.; Tian, Y.; Guo, L.; Yang, H. Alignment of liquid crystals doped with nickel nanoparticles containing different morphologies. Adv. Mater. 2011, 23, 5779–5784.
Zhang, Y.; Liu, Q. K.; Mundoor, H.; Yuan, Y.; Smalyukh, I. I. Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers. ACS Nano 2015, 9, 3097–3108.
Liu, B.; Ma, Y. R.; Zhao, D. Y.; Xu, L. H.; Liu, F. S.; Zhou, W.; Guo, L. Effects of morphology and concentration of CuS nanoparticles on alignment and electro-optic properties of nematic liquid crystal. Nano Res. 2017, 10, 618–625.
Wang, Q.; Shang, Y.; Yu, L.; Zou, C.; Yao, W. H.; Zhao, D. Y.; Song, P.; Yang, H.; Guo, L. Facet-dependent Cu2O nanocrystals in manipulating alignment of liquid crystals and photomechanical behaviors. Nano Res. 2016, 9, 2581–2589.
Nimmy, J. V.; Shiju, E.; Arun, R.; Varma, M. K. R.; Chandrasekharan, K.; Sandhyarani, N.; Varghese, S. Effect of ferroelectric nanoparticles in the alignment layer of twisted nematic liquid crystal display. Opt. Mater. 2017, 67, 7–13.
Kinkead, B.; Hegmann, T. Effects of size, capping agent, and concentration of CdSe and CdTe quantum dots doped into a nematic liquid crystal on the optical and electro-optic properties of the final colloidal liquid crystal mixture. J. Mater. Chem. 2010, 20, 448–458.
StöHr, J.; Samant, M. G.; Lüning, J.; Callegari, A. C.; Chaudhari, P.; Doyle, J. P.; Lacey, J. A.; Lien, S. A.; Purushothaman, S.; Speidell, J. L. Liquid crystal alignment on carbonaceous surfaces with orientational order. Science 2001, 292, 2299–2302.
Kumar, P.; Sharma, V.; Jaggi, C.; Malik, P.; Raina, K. K. Orientational control of liquid crystal molecules via carbon nanotubes and dichroic dye in polymer dispersed liquid crystal. Liq. Cryst. 2017, 44, 843–853.
Dolgov, L.; Yaroshchuk, O.; Tomylko, S.; Lebovka, N. Electro-optical memory of a nematic liquid crystal doped by multi-walled carbon nanotubes. Condens. Matter Phys. 2012, 15, 33401.
Wang, H. H.; Liu, B. Z.; Wang, L.; Chen, X. D.; Chen, Z. L.; Qi, Y.; Cui, G.; Xie, H. H.; Zhang, Y. F.; Liu, Z. F. Graphene glass inducing multidomain orientations in cholesteric liquid crystal devices toward wide viewing angles. ACS Nano 2018, 12, 6443–6451.
Shehzad, M. A.; Tien, D. H.; Iqbal, M. W.; Eom, J.; Park, J. H.; Hwang, C.; Seo, Y. Nematic liquid crystal on a two dimensional hexagonal lattice and its application. Sci. Rep. 2015, 5, 13331.
Chen, W. W.; Qi, J. J.; Dong, C.; Chen, J. W.; Shen, Z. T.; He, Y. L.; Yang, S. F.; Chen, T.; Chen, C.; Li, Y. L. et al. Solution-processed in situ growth of CuInS2 nanoparticle films for efficient planar heterojunction solar cells with a dual nature of charge generation. ACS Appl. Energy Mater. 2019, 2, 5231–5242.
Rice, W. D.; McDaniel, H.; Klimov, V. I.; Crooker, S. A. Magneto-optical properties of CuInS2 nanocrystals. J. Phys. Chem. Lett. 2014, 5, 4105–4109.
Chen, B. K.; Zhong, H. Z.; Zhang, W. Q.; Tan, Z. A.; Li, Y. F.; Yu, C. R.; Zhai, T. Y.; Bando, Y.; Yang, S. Y.; Zou, B. S. Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance. Adv. Funct. Mater. 2012, 22, 2081–2088.
Liu, K. G.; Li, J.; Xu, Y.; Shi, L.; Gao, W. C. Systematic investigation on synthesis of CuInS2 powder and its influencing factors. Cryst. Res. Technol. 2018, 53, 1700203.
Karanjai, M. K.; Dasgupta, D. Preparation and study of sulphide thin films deposited by the dip technique. Thin Solid Films 1987, 155, 309–315.
Gorai, S.; Bhattacharya, S.; Liarokapis, E.; Lampakis, D.; Chaudhuri, S. Morphology controlled solvothermal synthesis of copper indium sulphide powder and its characterization. Mater. Lett. 2005, 59, 3535–3538.
Chung, Y. F.; Chen, M. Z.; Yang, S. H.; Jeng, S. C. Tunable surface wettability of ZnO nanoparticle arrays for controlling the alignment of liquid crystals. ACS Appl. Mater. Interfaces 2015, 7, 9619–9624.
Park, H. G.; Kim, H. J.; Jeong, H. Y.; Yang, S.; Kang, Y. G.; Lee, H. J.; Oh, B. Y.; Kim, B. Y.; Kim, Y. H.; Park, Y. P. et al. Liquid crystal alignment properties on zirconia doped polyimide layer. Mol. Cryst. Liq. Cryst. 2012, 553, 90–96.