Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Sodium metal is a promising anode for sodium batteries due to its high theoretical capacity and low cost. However, the serious Na dendrite growth and low Coulombic efficiency, especially at high current densities/cycling capacities, severely limit the application of sodium metal anodes. Herein, trifluoromethylfullerene, C60(CF3)6, is designed as an electrolyte additive to enable the high-rate cycling of sodium metal anodes with high Coulombic efficiency. The CF3 groups contribute to the formation of stable NaF-rich solid electrolyte interface layer, while C60 cages induce the uniform distribution of sodium ions and promote the formation of smooth and compact morphology. Thus, Na||Cu cell with C60(CF3)6 can be cycled at 2 mA·cm−2 and 10 mAh·cm−2 over 180 cycles with an average Coulombic efficiency of 99.9%, and Na||Na cell can be cycled at 10 mA·cm−2 over 600 cycles. Furthermore, Na||NaV2(PO4)3@C full cell exhibits high capacity retention of 84% over 2,000 cycles at 20 C (~ 3 mA·cm−2).
Wang, Y. X.; Wang, Y. X.; Wang, Y. X.; Feng, X. M.; Chen, W. H.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Developments and perspectives on emerging high-energy-density sodium-metal batteries. Chem 2019, 5, 2547–2570.
Lee, B.; Paek, E.; Mitlin, D.; Lee, S. W. Sodium metal anodes: Emerging solutions to dendrite growth. Chem. Rev. 2019, 119, 5416–5460.
Wang, H.; Matios, E.; Luo, J. M.; Li, W. Y. Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries. Chem. Soc. Rev. 2020, 49, 3783–3805.
Zhao, Y.; Adair, K. R.; Sun, X. L. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ. Sci. 2018, 11, 2673–2695.
Zheng, X. Y.; Bommier, C.; Luo, W.; Jiang, L. H.; Hao, Y. N.; Huang, Y. H. Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions. Energy Storage Mater. 2019, 16, 6–23.
Bao, C. Y.; Wang, B.; Liu, P.; Wu, H.; Zhou, Y.; Wang, D. L.; Liu, H. K.; Dou, S. X. Solid electrolyte interphases on sodium metal anodes. Adv. Funct. Mater. 2020, 30, 2004891.
Ma, C. Y.; Xu, T. T.; Wang, Y. Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Mater. 2020, 25, 811–826.
Lee, Y.; Lee, J.; Lee, J.; Kim, K.; Cha, A. M.; Kang, S. J.; Wi, T.; Kang, S. J.; Lee, H. W.; Choi, N. S. Fluoroethylene carbonate-based electrolyte with 1 M sodium bis(fluorosulfonyl)imide enables high-performance sodium metal electrodes. ACS Appl. Mater. Interfaces 2018, 10, 15270–15280.
Yi, Q.; Lu, Y.; Sun, X. R.; Zhang, H.; Yu, H. L.; Sun, C. W. Fluorinated ether based electrolyte enabling sodium-metal batteries with exceptional cycling stability. ACS Appl. Mater. Interfaces 2019, 11, 46965–46972.
Mogensen, R.; Brandell, D.; Younesi, R. Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries. ACS Energy Lett. 2016, 1, 1173–1178.
Fan, J. J.; Dai, P.; Shi, C. G.; Wen, Y. F.; Luo, C. X.; Yang, J.; Song, C.; Huang, L.; Sun, S. G. Synergistic dual-additive electrolyte for interphase modification to boost cyclability of layered cathode for sodium ion batteries. Adv. Funct. Mater. 2021, 31, 2010500.
Shi, Q. W.; Zhong, Y. R.; Wu, M.; Wang, H. Z.; Wang, H. L. High-performance sodium metal anodes enabled by a bifunctional potassium salt. Angew. Chem., Int. Ed. 2018, 57, 9069–9072.
Wang, H.; Wang, C. L.; Matios, E.; Li, W. Y. Facile stabilization of the sodium metal anode with additives: Unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew. Chem., Int. Ed. 2018, 57, 7734–7737.
Wang, S. Y.; Cai, W. B.; Sun, Z. H.; Huang, F. Y.; Jie, Y. L.; Liu, Y.; Chen, Y. W.; Peng, B.; Cao, R. G.; Zhang, G. Q. et al. Stable cycling of Na metal anodes in a carbonate electrolyte. Chem. Commun. 2019, 55, 14375–14378.
Jiang, R.; Hong, L.; Liu, Y. C.; Wang, Y. D.; Patel, S.; Feng, X. Y.; Xiang, H. F. An acetamide additive stabilizing ultra-low concentration electrolyte for long-cycling and high-rate sodium metal battery. Energy Storage Mater. 2021, 42, 370–379.
Miao, X. G.; Di, H. X.; Ge, X. L.; Zhao, D. Y.; Wang, P.; Wang, R. T.; Wang, C. X.; Yin, L. W. AlF3-modified anode-electrolyte interface for effective Na dendrites restriction in nasicon-based solid-state electrolyte. Energy Storage Mater. 2020, 30, 170–178.
Zhu, M.; Li, L. L.; Zhang, Y. J.; Wu, K.; Yu, F. F.; Huang, Z. Y.; Wang, G. Y.; Li, J. Y.; Wen, L. Y.; Liu, H. K. et al. An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte. Energy Storage Mater. 2021, 42, 145–153.
Zheng, X. Y.; Fu, H. Y.; Hu, C. C.; Xu, H.; Huang, Y.; Wen, J. Y.; Sun, H. B.; Luo, W.; Huang, Y. H. Toward a stable sodium metal anode in carbonate electrolyte: A compact, inorganic alloy interface. J. Phys. Chem. Lett. 2019, 10, 707–714.
Fang, W.; Jiang, H.; Zheng, Y.; Zheng, H.; Liang, X.; Sun, Y.; Chen, C. H.; Xiang, H. F. A bilayer interface formed in high concentration electrolyte with SbF3 additive for long-cycle and high-rate sodium metal battery. J. Power Sources 2020, 455, 227956.
Lee, Y.; Lee, J.; Kim, H.; Kang, K.; Choi, N. S. Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries. J. Power Sources 2016, 320, 49–58.
Zhu, M.; Zhang, Y. J.; Yu, F. F.; Huang, Z. Y.; Zhang, Y.; Li, L. L.; Wang, G. Y.; Wen, L. Y.; Liu, H. K.; Dou, S. X. et al. Stable sodium metal anode enabled by an interface protection layer rich in organic sulfide salt. Nano Lett. 2021, 21, 619–627.
Zhong, Y. R.; Shi, Q. W.; Zhu, C. Q.; Zhang, Y. F.; Li, M.; Francisco, J. S.; Wang, H. L. Mechanistic insights into fast charging and discharging of the sodium metal battery anode: A comparison with lithium. J. Am. Chem. Soc. 2021, 143, 13929–13936.
Goryunkov, A. A.; Kuvychko, I. V.; Ioffe, I. N.; Dick, D. L.; Sidorov, L. N.; Strauss, S. H.; Boltalina, O. V. Isolation of C60(CF3)n (n = 2, 4, 6, 8, 10) with high compositional purity. J. Fluorine Chem. 2003, 124, 61–64.
Jiang, Z. P.; Zeng, Z. Q.; Yang, C. K.; Han, Z. L.; Hu, W.; Lu, J.; Xie, J. Nitrofullerene, a C60-based bifunctional additive with smoothing and protecting effects for stable lithium metal anode. Nano Lett. 2019, 19, 8780–8786.
Ardhi, R. E. A.; Liu, G. C.; Lee, J. K. Metal-semiconductor ohmic and schottky contact interfaces for stable Li-metal electrodes. ACS Energy Lett. 2021, 6, 1432–1442.
Xu, Q. S.; Lin, J. J.; Ye, C. C.; Jin, X. J.; Ye, D. Q.; Lu, Y. Y.; Zhou, G. M.; Qiu, Y. C.; Li, W. S. Air-stable and dendrite-free lithium metal anodes enabled by a hybrid interphase of C60 and Mg. Adv. Energy Mater. 2020, 10, 1903292.
Li, P. J.; Jiang, Z. P.; Huang, X. B.; Lu, X.; Xie, J.; Cheng, S. J. Nitrofullerene as an electrolyte-compatible additive for high-performance sodium metal batteries. Nano Energy 2021, 89, 106396.
Gu, Y.; Wang, W. W.; Li, Y. J.; Wu, Q. H.; Tang, S.; Yan, J. W.; Zheng, M. S.; Wu, D. Y.; Fan, C. H.; Hu, W. Q. et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nat. Commun. 2018, 9, 1339.
Hoen, S.; Chopra, N. G.; Xiang, X. D.; Mostovoy, R.; Hou, J. G.; Vareka, W. A.; Zettl, A. Elastic properties of a van der waals solid: C60. Phys. Rev. B 1992, 46, 12737–12739.
Pikhurov, D. V.; Zuev, V. V. The effect of fullerene C60 on the dielectric behaviour of epoxy resin at low nanofiller loading. Chem. Phys. Lett. 2014, 601, 13–15.
Song, P. A.; Liu, L. N.; Huang, G. B.; Yu, Y. M.; Guo, Q. P. Largely enhanced thermal and mechanical properties of polymer nanocomposites via incorporating C60@graphene nanocarbon hybrid. Nanotechnology 2013, 24, 505706.
Jiang, Z. P.; Zhao, Y. M.; Lu, X.; Xie, J. Fullerenes for rechargeable battery applications: Recent developments and future perspectives. J. Energy Chem. 2021, 55, 70–79.
McHedlov-Petrossyan, N. O. Fullerenes in liquid media: An unsettling intrusion into the solution chemistry. Chem. Rev. 2013, 113, 5149–5193.
Han, J. G.; Hwang, C.; Kim, S. H.; Park, C.; Kim, J.; Jung, G. Y.; Baek, K.; Chae, S.; Kang, S. J.; Cho, J. et al. An antiaging electrolyte additive for high-energy-density lithium-ion batteries. Adv. Energy Mater. 2020, 10, 2000563.
Hou, Z.; Wang, W. H.; Chen, Q. W.; Yu, Y. K.; Zhao, X. X.; Tang, M.; Zheng, Y. Y.; Quan, Z. W. Hybrid protective layer for stable sodium metal anodes at high utilization. ACS Appl. Mater. Interfaces 2019, 11, 37693–37700.
Zhang, X.; Hao, F.; Cao, Y. J.; Xie, Y. H.; Yuan, S. Y.; Dong, X. L.; Xia, Y. Y. Dendrite-free and long-cycling sodium metal batteries enabled by sodium-ether cointercalated graphite anode. Adv. Funct. Mater. 2021, 31, 2009778.
Zhao, Y.; Goncharova, L. V.; Zhang, Q.; Kaghazchi, P.; Sun, Q.; Lushington, A.; Wang, B. Q.; Li, R. Y.; Sun, X. L. Inorganic–organic coating via molecular layer deposition enables long life sodium metal anode. Nano Lett. 2017, 17, 5653–5659.
Zheng, X. Y.; Gu, Z. Y.; Liu, X. Y.; Wang, Z. Q.; Wen, J. Y.; Wu, X. L.; Luo, W.; Huang, Y. H. Bridging the immiscibility of an all-fluoride fire extinguishant with highly-fluorinated electrolytes toward safe sodium metal batteries. Energy Environ. Sci. 2020, 13, 1788–1798.
Han, M.; Zhu, C. B.; Ma, T.; Pan, Z.; Tao, Z. L.; Chen, J. In situ atomic force microscopy study of nano–micro sodium deposition in ester-based electrolytes. Chem. Commun. 2018, 54, 2381–2384.
Liu, X. Y.; Zheng, X. Y.; Dai, Y. M.; Wu, W. Y.; Huang, Y. Y.; Fu, H. Y.; Huang, Y. H.; Luo, W. Fluoride-rich solid-electrolyte-interface enabling stable sodium metal batteries in high-safe electrolytes. Adv. Funct. Mater. 2021, 31, 2103522.
Wu, J. Y.; Li, X. W.; Rao, Z. X.; Xu, X. N.; Cheng, Z. X.; Liao, Y. Q.; Yuan, L. X.; Xie, X. L.; Li, Z.; Huang, Y. H. Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes. Nano Energy 2020, 72, 104725.
Chen, X.; Shen, X.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhang, Q. Ion-solvent chemistry-inspired cation-additive strategy to stabilize electrolytes for sodium-metal batteries. Chem 2020, 6, 2242–2256.
Zheng, X. Y.; Gu, Z. Y.; Fu, J.; Wang, H. T.; Ye, X. L.; Huang, L. Q.; Liu, X. Y.; Wu, X. L.; Luo, W.; Huang, Y. H. Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries. Energy Environ. Sci. 2021, 14, 4936–4947.
Choudhury, S.; Wei, S. Y.; Ozhabes, Y.; Gunceler, D.; Zachman, M. J.; Tu, Z. Y.; Shin, J. H.; Nath, P.; Agrawal, A.; Kourkoutis, L. F. et al. Designing solid-liquid interphases for sodium batteries. Nat. Commun. 2017, 8, 898.
Xie, J.; Liao, L.; Gong, Y. J.; Li, Y. B.; Shi, F. F.; Pei, A.; Sun, J.; Zhang, R. F.; Kong, B.; Subbaraman, R. et al. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci. Adv. 2017, 3, eaao3170.
Schafzahl, L.; Hanzu, I.; Wilkening, M.; Freunberger, S. A. An electrolyte for reversible cycling of sodium metal and intercalation compounds. ChemSusChem 2017, 10, 401–408.
Le, P. M. L.; Vo, T. D.; Pan, H. L.; Jin, Y.; He, Y.; Cao, X.; Nguyen, H. V.; Engelhard, M. H.; Wang, C. M.; Xiao, J. et al. Excellent cycling stability of sodium anode enabled by a stable solid electrolyte interphase formed in ether-based electrolytes. Adv. Funct. Mater. 2020, 30, 2001151.
Seh, Z. W.; Sun, J.; Sun, Y. M.; Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 2015, 1, 449–455.
Wang, S. Y.; Chen, Y. W.; Jie, Y. L.; Lang, S. Y.; Song, J. H.; Lei, Z. W.; Wang, S.; Ren, X. D.; Wang, D.; Li, X. L. et al. Stable sodium metal batteries via manipulation of electrolyte solvation structure. Small Methods 2020, 4, 1900856.
Cao, R. G.; Mishra, K.; Li, X. L.; Qian, J. F.; Engelhard, M. H.; Bowden, M. E.; Han, K. S.; Mueller, K. T.; Henderson, W. A.; Zhang, J. G. Enabling room temperature sodium metal batteries. Nano Energy 2016, 30, 825–830.
Zheng, J. M.; Chen, S. R.; Zhao, W. G.; Song, J. H.; Engelhard, M. H.; Zhang, J. G. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 2018, 3, 315–321.
Zhou, L.; Cao, Z.; Zhang, J.; Sun, Q. J.; Wu, Y. Q.; Wahyudi, W.; Hwang, J. Y.; Wang, L. M.; Cavallo, L.; Sun, Y. K. et al. Engineering sodium-ion solvation structure to stabilize sodium anodes: Universal strategy for fast-charging and safer sodium-ion batteries. Nano Lett. 2020, 20, 3247–3254.
Han, B.; Zou, Y. C.; Zhang, Z.; Yang, X. M.; Shi, X. B.; Meng, H.; Wang, H.; Xu, K.; Deng, Y. H.; Gu, M. Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy. Nat. Commun. 2021, 12, 3066.
Xue, W. J.; Huang, M. J.; Li, Y. T.; Zhu, Y. G.; Gao, R.; Xiao, X. H.; Zhang, W. X.; Li, S. P.; Xu, G. Y.; Yu, Y. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat Energy 2021, 6, 495–505.