AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multi-layered micro/nanofibrous nonwovens for functional face mask filter

Yuanqiang XuXiaomin ZhangDefang TengTienan ZhaoYing LiYongchun Zeng( )
College of Textiles, Donghua University, Shanghai 201620, China
Show Author Information

Graphical Abstract

The micro/nano-scaled fibers with porous and wrinkled surface morphologies and the multilevel pore sizes give the nonwovens high filtration efficiency under low pressure drop. Meanwhile, the nonwovens possess superior antibacterial performance by adding Ag nanoparticles as additives. These performances and function make the nonwovens promising filter core for face masks.

Abstract

The worldwide COVID-19 pandemic has led to an attention on the usage of personal protective face masks. However, the longevity and safety of the commercial face masks are limited due to the charge dissipation of the electret meltblown nonwovens, which are dominate in the face mask filters. Herein, we design a type of multi-layer structured nonwovens using meltblowing and electrospinning technologies. The complex nonwovens involving meltblown and electrospun fibers are designed to possess multilevel fiber diameters and pore sizes. The micro/nanofibers with porous and wrinkled surface morphologies can well capture particulate matters (PMs), and the multilevel pore sizes contribute to low air resistance under high filtration efficiency. Airflow field simulation was carried out to understand the pressure distribution within the nonwovens in the filtration process. Meanwhile, by adding Ag nanoparticles (AgNPs) as additives, the nonwovens exhibit excellent antibacterial performance. The resultant nonwovens exhibit filtration efficiency of 99.1% for PM0.3 and low pressure drop of 105 Pa under the 10.67 cm/s inlet air velocity, and antibacterial rate of > 99.99% for Escherichia coli. These performances and functions make the designed complex nonwovens a promising filter core for face masks.

Electronic Supplementary Material

Download File(s)
12274_2022_4350_MOESM1_ESM.pdf (506.8 KB)

References

1

Liao, L.; Xiao, W.; Zhao, M.; Yu, X. Z.; Wang, H. T.; Wang, Q. Q.; Chu, S.; Cui, Y. Can N95 respirators be reused after disinfection? How many times. ACS Nano 2020, 14, 6348–6356.

2

Barhate, R. S.; Ramakrishna, S. Nanofibrous filtering media: Filtration problems and solutions from tiny materials. J. Membr. Sci. 2007, 296, 1–8.

3

Wang, C. S.; Otani, Y. Removal of nanoparticles from gas streams by fibrous filters: A review. Ind. Eng. Chem. Res. 2013, 52, 5–17.

4

Ghosal, A.; Sinha-Ray, S.; Yarin, A. L.; Pourdeyhimi, B. Numerical prediction of the effect of uptake velocity on three-dimensional structure, porosity and permeability of meltblown nonwoven laydown. Polymer 2016, 85, 19–27.

5

Pope III, C. A.; Dockery, D. W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manage. Assoc. 2006, 56, 709–742.

6

Donaldson, K.; Stone, V.; Seaton, A.; MacNee, W. Ambient particle inhalation and the cardiovascular system: Potential mechanisms. Environ. Health Perspect. 2001, 109, 523–527.

7

Chowdhury, S.; Dey, S.; Smith, K. R. Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios. Nat. Commun. 2018, 9, 318.

8

Liu, H.; Zhang, S. C.; Liu, L. F.; Yu, J. Y.; Ding, B. High-performance PM0.3 air filters using self-polarized electret nanofiber/nets. Adv. Funct. Mater. 2020, 30, 1909554.

9

Campos, R. K.; Jin, J.; Rafael, G. H.; Zhao, M.; Liao, L.; Simmons, G.; Chu, S.; Weaver, S. C.; Chiu, W.; Cui, Y. Decontamination of SARS-CoV-2 and other RNA viruses from N95 level meltblown polypropylene fabric using heat under different humidities. ACS Nano 2020, 14, 14017–14025.

10

Zhao, X. L.; Li, Y. Y.; Hua, T.; Jiang, P.; Yin, X.; Yu, J. Y.; Ding, B. Cleanable air filter transferring moisture and effectively capturing PM2.5. Small 2017, 13, 1603306.

11

Xu, J. W.; Xiao, X.; Zhang, W. B.; Xu, R.; Kim, S. C.; Cui, Y.; Howard, T. T.; Wu, E.; Cui, Y. Air-filtering masks for respiratory protection from PM2.5 and pandemic pathogens. One Earth 2020, 3, 574–589.

12

Zhu, M. M.; Han, J. Q.; Wang, F.; Shao, W.; Xiong, R. H.; Zhang, Q. L.; Pan, H.; Yang, Y.; Samal, S. K.; Zhang, F. et al. Electrospun nanofibers membranes for effective air filtration. Macromol. Mater. Eng. 2017, 302, 1600353.

13

Lu, T.; Cui, J. X.; Qu, Q. L.; Wang, Y. L.; Zhang, J.; Xiong, R. H.; Ma, W. J.; Huang, C. B. Multistructured electrospun nanofibers for air filtration: A review. ACS Appl. Mater. Interfaces 2021, 13, 23293–23313.

14

Liu, C.; Hsu, P. C.; Lee, H. W.; Ye, M.; Zheng, G. Y.; Liu, N.; Li, W. Y.; Cui, Y. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 2015, 6, 6205.

15

Xu, J. W.; Liu, C.; Hsu, P. C.; Liu, K.; Zhang, R. F.; Liu, Y. Y.; Cui, Y. Roll-to-roll transfer of electrospun nanofiber film for high-efficiency transparent air filter. Nano Lett. 2016, 16, 1270–1275.

16

Liu, K.; Liu, C.; Hsu, P. C.; Xu, J. W.; Kong, B.; Wu, T.; Zhang, R. F.; Zhou, G. M.; Huang, W.; Sun, J. et al. Core–shell nanofibrous materials with high particulate matter removal efficiencies and thermally triggered flame retardant properties. ACS Cent. Sci. 2018, 4, 894–898.

17

Zhang, R. F.; Liu, C.; Hsu, P. C.; Zhang, C. F.; Liu, N.; Zhang, J. S.; Lee, H. R.; Lu, Y. Y.; Qiu, Y. C.; Chu, S. et al. Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett. 2016, 16, 3642–3649.

18

Wang, Q. F.; Wei, Y. Z.; Li, W. B.; Luo, X. Z.; Zhang, X. Y.; Di, J. C.; Wang, G. Q.; Yu, J. H. Polarity-dominated stable N97 respirators for airborne virus capture based on nanofibrous membranes. Angew. Chem., Int. Ed. 2021, 60, 23756–23762.

19

Jiang, Z. C.; Zhang, H. Y.; Zhu, M. M.; Lv, D.; Yao, J. F.; Xiong, R. H.; Huang, C. B. Electrospun soy-protein-based nanofibrous membranes for effective antimicrobial air filtration. J. Appl. Polym. Sci. 2018, 135, 45766.

20

Greiner, A.; Wendorff, J. H. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem., Int. Ed. 2007, 46, 5670–5703.

21

Xu, Y. Q.; Zhang, X. M.; Hao, X. B.; Teng, D. F.; Zhao, T. N.; Zeng, Y. C. Micro/nanofibrous nonwovens with high filtration performance and radiative heat dissipation property for personal protective face mask. Chem. Eng. J. 2021, 423, 130175.

22

Zhu, M. M.; Xiong, R. H.; Huang, C. B. Bio-based and photocrosslinked electrospun antibacterial nanofibrous membranes for air filtration. Carbohydr. Polym. 2019, 205, 55–62.

23

Zhu, M. M.; Hua, D. W.; Pan, H.; Wang, F.; Manshian, B.; Soenen, S. J.; Xiong, R. H.; Huang, C. B. Green electrospun and crosslinked poly(vinyl alcohol)/poly(acrylic acid) composite membranes for antibacterial effective air filtration. J. Colloid Interface Sci. 2018, 511, 411–423.

24

Wang, F.; Si, Y.; Yu, J. Y.; Ding, B. Tailoring nanonets-engineered superflexible nanofibrous aerogels with hierarchical cage-like architecture enables renewable antimicrobial air filtration. Adv. Funct. Mater. 2021, 31, 2107223.

25

Tian, C. C.; Wu, F.; Jiao, W. L.; Liu, X. Y.; Yin, X.; Si, Y.; Yu, J. Y.; Ding, B. Antibacterial and antiviral N-halamine nanofibrous membranes with nanonet structure for bioprotective applications. Compos. Commun. 2021, 24, 100668.

26

Borkow, G.; Zhou, S. S.; Page, T.; Gabbay, J. A novel anti-influenza copper oxide containing respiratory face mask. PLoS One 2010, 5, e11295.

27

Zhu, Z.; Zhang, Y.; Bao, L.; Chen, J. P.; Duan, S.; Chen, S. C.; Xu, P.; Wang, W. N. Self-decontaminating nanofibrous filters for efficient particulate matter removal and airborne bacteria inactivation. Environ. Sci. :Nano 2021, 8, 1081–1095.

28

Zhao, Y. H.; Zhou, Y.; Wu, X. M.; Wang, L.; Xu, L.; Wei, S. C. A facile method for electrospinning of Ag nanoparticles/poly(vinyl alcohol)/carboxymethyl-chitosan nanofibers. Appl. Surf. Sci. 2012, 258, 8867–8873.

29

Hong, K. H. Preparation and properties of electrospun poly(vinyl alcohol)/silver fiber web as wound dressings. Polym. Eng. Sci. 2007, 47, 43–49.

30

Xu, L.; Wang, Y. Y.; Huang, J.; Chen, C. Y.; Wang, Z. X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020, 10, 8996–9031.

31

Zhang, H. F.; Liu, J. X.; Zhang, X.; Huang, C.; Zhang, Y.; Fu, Y. J.; Jin, X. Y. Design of three-dimensional gradient nonwoven composites with robust dust holding capacity for air filtration. J. Appl. Polym. Sci. 2019, 136, 47827.

32

Zhang, S. C.; Tang, N.; Cao, L. T.; Yin, X.; Yu, J. Y.; Ding, B. Highly integrated polysulfone/polyacrylonitrile/polyamide-6 air filter for multilevel physical sieving airborne particles. ACS Appl. Mater. Interfaces 2016, 8, 29062–29072.

33

Choi, S.; Jeon, H.; Jang, M.; Kim, H.; Shin, G.; Koo, J. M.; Lee, M.; Sung, H. K.; Eom, Y.; Yang, H. S. et al. Biodegradable, efficient, and breathable multi-use face mask filter. Adv. Sci. 2021, 8, 2003155.

34

Wang, B. X.; Wang, Q. F.; Wang, Y.; Di, J. C.; Miao, S. D.; Yu, J. H. Flexible multifunctional porous nanofibrous membranes for high-efficiency air filtration. ACS Appl. Mater. Interfaces 2019, 11, 43409–43415.

35

Qi, Z. H.; Yu, H.; Chen, Y. M.; Zhu, M. F. Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly(L-lactic acid). Mater. Lett. 2009, 63, 415–418.

36

Song, J.; Zhang, B. W.; Lu, Z. H.; Xin, Z. Y.; Liu, T.; Wei, W. Y.; Zia, Q.; Pan, K. W.; Gong, R. H.; Bian, L. M. et al. Hierarchical porous poly(L-lactic acid) nanofibrous membrane for ultrafine particulate aerosol filtration. ACS Appl. Mater. Interfaces 2019, 11, 46261–46268.

37

Guillen, G. R.; Pan, Y. J.; Li, M. H.; Hoek, E. M. V. Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817.

38

Xiong, J.; Li, A. L.; Liu, Y.; Wang, L. M.; Qin, X. H.; Yu, J. Y. Multi-scale nanoarchitectured fibrous networks for high-performance, self-sterilization, and recyclable face masks. Small 2022, 13, 2105570.

39

Zhang, G. H.; Zhu, Q. H.; Zhang, L.; Yong, F.; Zhang, Z.; Wang, S. L.; Wang, Y.; He, L.; Tao, G. H. High-performance particulate matter including nanoscale particle removal by a self-powered air filter. Nat. Commun. 2020, 11, 1653.

40

Stylianopoulos, T.; Yeckel, A.; Derby, J. J.; Luo, X. J.; Shephard, M. S.; Sander, E. A.; Barocas, V. H. Permeability calculations in three-dimensional isotropic and oriented fiber networks. Phys. Fluids 2008, 20, 123601.

41

Clague, D. S.; Kandhai, B. D.; Zhang, R.; Sloot, P. M. A. Hydraulic permeability of (un)bounded fibrous media using the lattice Boltzmann method. Phys. Rev. E 2000, 61, 616–625.

42

Davies, C. N. The separation of airborne dust and particles. Proc. Inst. Mech. Eng. 1953, 167, 185–213.

43

Shameli, K.; Ahmad, M. B.; Yunus, W. M. Z. W.; Ibrahim, N. A.; Rahman, R. A.; Jokar, M.; Darroudi, M. Silver/poly(lactic acid) nanocomposites: Preparation, characterization, and antibacterial activity. Int. J. Nanomedicine 2010, 5, 573–579.

44

Tao, Y. B.; Liu, M. M.; Han, W. J.; Li, P. Waste office paper filled polylactic acid composite filaments for 3D printing. Compos. Part B:Eng. 2021, 221, 108998.

Nano Research
Pages 7549-7558
Cite this article:
Xu Y, Zhang X, Teng D, et al. Multi-layered micro/nanofibrous nonwovens for functional face mask filter. Nano Research, 2022, 15(8): 7549-7558. https://doi.org/10.1007/s12274-022-4350-2
Topics:

994

Views

41

Crossref

36

Web of Science

37

Scopus

0

CSCD

Altmetrics

Received: 13 January 2022
Revised: 08 March 2022
Accepted: 22 March 2022
Published: 11 May 2022
© Tsinghua University Press 2022
Return