AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Sensitively detecting antigen of SARS-CoV-2 by NIR-II fluorescent nanoparticles

Ruibin Hu1,§Tao Liao2,§Yan Ren3,§Wenming Liu2Rui Ma1Xinyuan Wang1Qihui Lin3( )Guoxin Wang2( )Yongye Liang1( )
Department of Materials Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China
WWHS Biotech. Inc., Shenzhen 518122, China
Joint Laboratory for Infectious Disease Prevention and Control, Hygienic Section of Longhua Center for Disease Control and Prevention, Longhua District, Shenzhen 518109, China

§ Ruibin Hu, Tao Liao, and Yan Ren contributed equally to this work.

Show Author Information

Graphical Abstract

The second near-infrared (NIR-II) fluorescent nanoparticles are applied to construct a lateral flow assay (LFA) for sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen. The NIR-II LFA shows improved limit of detection down to 0.01 ng·mL−1 and outperforms the colloidal gold-based LFA with much higher accuracy in positive sample detection in clinical sample measurements.

Abstract

Early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is an efficient way to prevent the spread of coronavirus disease 2019 (COVID-19). Detecting SARS-CoV-2 antigen can be rapid and convenient, but it is still challenging to develop highly sensitive methods for effective diagnosis. Herein, a lateral flow assay (LFA) based on fluorescent nanoparticles emitting in the second near-infrared (NIR-II) window is developed for sensitive detection of SARS-CoV-2 antigen. Benefiting from the NIR-II fluorescence with high penetration and low autofluorescence, such NIR-II based LFA allows enhanced signal-to-background ratio, and the limit of detection is down to 0.01 ng·mL−1 of SARS-CoV-2 antigen. In the clinical swab sample tests, the NIR-II LFA outperforms the colloidal gold LFA with higher overall percent agreement with the polymerase chain reaction test. The clinical samples with low antigen concentrations (~ 0.015–~ 0.068 ng·mL−1) can be successfully detected by the NIR-II LFA, but fail for the colloidal gold LFA. The NIR-II LFA can provide a promising platform for highly sensitive, rapid, and cost-effective method for early diagnosis and mass screening of SARS-CoV-2 infection.

Electronic Supplementary Material

Download File(s)
12274_2022_4351_MOESM1_ESM.pdf (548 KB)

References

1

Wang, C.; Horby, P. W.; Hayden, F. G.; Gao, G. F. A novel coronavirus outbreak of global health concern. Lancet. 2020, 395, 470–473.

2

Zhu, N.; Zhang, D. Y.; Wang, W. L.; Li, X. W.; Yang, B.; Song, J. D.; Zhao, X.; Huang, B. Y.; Shi, W. F.; Lu, R. J. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733.

3
World Health Organization. Coronavirus Disease (COVID-19) [Online]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed Feb, 2022).
4

Huang, C. L.; Wang, Y. M.; Li, X. W.; Ren, L. L.; Zhao, J. P.; Hu, Y.; Zhang, L.; Fan, G. H.; Xu, J. Y.; Gu, X. Y. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506.

5

Hu, B.; Guo, H.; Zhou, P.; Shi, Z. L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154.

6

Corman, V. M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D. K.; Bleicker, T.; Brunink, S.; Schneider, J.; Schmidt, M. L. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020, 25, 2000045.

7

Jin, Y. H.; Cai, L.; Cheng, Z. S.; Cheng, H.; Deng, T.; Fan, Y. P.; Fang, C.; Huang, D.; Huang, L. Q.; Huang, Q. et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil. Med. Res. 2020, 7, 4.

8

Liu, G. Q.; Rusling, J. F. COVID-19 antibody tests and their limitations. ACS Sens. 2021, 6, 593–612.

9

Gillot, C.; Douxfils, J.; Cadrobbi, J.; Laffineur, K.; Dogné, J. M.; Elsen, M.; Eucher, C.; Melchionda, S.; Modaffarri, É.; Tré-Hardy, M. et al. An original ELISA-based multiplex method for the simultaneous detection of 5 SARS-CoV-2 IgG antibodies directed against different antigens. J. Clin. Med. 2020, 9, 3752.

10

Frumence, E.; Lebeau, G.; Viranaicken, W.; Dobi, A.; Vagner, D.; Lalarizo Rakoto, M.; Sandenon Seteyen, A. L.; Giry, C.; Septembre-Malaterre, A.; Raffray, L. et al. Robust and low-cost ELISA based on IgG-Fc tagged recombinant proteins to screen for anti-SARS-CoV-2 antibodies. J. Immunol. Methods 2021, 495, 113082.

11

Tan, C. W.; Chia, W. N.; Qin, X. J.; Liu, P.; Chen, M. I. C.; Tiu, C.; Hu, Z. L.; Chen, V. C. W.; Young, B. E.; Sia, W. R. et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein–protein interaction. Nat. Biotechnol. 2020, 38, 1073–1078.

12

Soleimani, R.; Khourssaji, M.; Gruson, D.; Rodriguez-Villalobos, H.; Berghmans, M.; Belkhir, L.; Yombi, J. C.; Kabamba-Mukadi, B. Clinical usefulness of fully automated chemiluminescent immunoassay for quantitative antibody measurements in COVID-19 patients. J. Med. Virol. 2021, 93, 1465–1477.

13

Infantino, M.; Grossi, V.; Lari, B.; Bambi, R.; Perri, A.; Manneschi, M.; Terenzi, G.; Liotti, I.; Ciotta, G.; Taddei, C. et al. Diagnostic accuracy of an automated chemiluminescent immunoassay for anti-SARS-CoV-2 IgM and IgG antibodies: An Italian experience. J. Med. Virol. 2020, 92, 1671–1675.

14

Padoan, A.; Cosma, C.; Sciacovelli, L.; Faggian, D.; Plebani, M. Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IgM/IgG and antibody kinetics. Clin. Chem. Lab. Med. 2020, 58, 1081–1088.

15

Zhang, C.; Zheng, T. T.; Wang, H.; Chen, W.; Huang, X. Y.; Liang, J. Q.; Qiu, L. P.; Han, D.; Tan. W. H. Rapid one-pot detection of SARS-CoV-2 based on a lateral flow assay in clinical samples. Anal. Chem. 2021, 93, 3325–3330.

16

Chen, R.; Ren, C. P.; Liu, M.; Ge, X. P.; Qu, M. S.; Zhou, X. B.; Liang, M. F.; Liu, Y.; Li, F. Y. Early detection of SARS-CoV-2 seroconversion in humans with aggregation-induced near-infrared emission nanoparticle-labeled lateral flow immunoassay. ACS Nano 2021, 15, 8996–9004.

17

Wang, D. M.; He, S. G.; Wang, X. H.; Yan, Y. Q.; Liu, J. Z.; Wu, S. M.; Liu, S. G.; Lei, Y.; Chen, M.; Li, L. et al. Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA. Nat. Biomed. Eng. 2020, 4, 1150–1158.

18
Wondfo, 2019-nCoV Antibody Test (Lateral Flow Method) [online]. https://en.wondfo.com.cn/pt/index77.html (accessed Feb 1, 2022).
19

Li, Z. T.; Yi, Y. X.; Luo, X. M.; Xiong, N.; Liu, Y.; Li, S. Q.; Sun, R. L.; Wang, Y. Q.; Hu, B. C.; Chen, W. et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 2020, 92, 1518–1524.

20

Ravi, N.; Cortade, D. L.; Ng, E.; Wang, S. X. Diagnostics for SARS-CoV-2 detection: A comprehensive review of the FDA-EUA COVID-19 testing landscape. Biosens. Bioelectron. 2020, 165, 112454.

21

Xu, L. Z.; Li, D. Y.; Ramadan, S.; Li, Y. B.; Klein, N. Facile biosensors for rapid detection of COVID-19. Biosens. Bioelectron. 2020, 170, 112673.

22

Lou, B.; Li, T. D.; Zheng, S. F.; Su, Y. Y.; Li, Z. Y.; Liu, W.; Yu, F.; Ge, S. X.; Zou, Q. D.; Yuan, Q. et al. Serology characteristics of SARS-CoV-2 infection after exposure and post-symptom onset. Eur. Respir. J. 2020, 56, 2000763.

23

Hou, H. Y.; Wang, T.; Zhang, B.; Luo, Y.; Mao, L.; Wang, F.; Wu, S. J.; Sun, Z. Y. Detection of IgM and IgG antibodies in patients with coronavirus disease 2019. Clin. Transl. Immunol. 2020, 9, e01136.

24

Lauer, S. A.; Grantz, K. H.; Bi, Q. F.; Jones, F. K.; Zheng, Q. L.; Meredith, H. R.; Azman, A. S.; Reich, N. G.; Lessler, J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Ann. Intern. Med. 2020, 172, 577–582.

25

Zhou, J.; Li, C.; Liu, X. J.; Chiu, M. C.; Zhao, X. Y.; Wang, D.; Wei, Y. X.; Lee, A.; Zhang, A. J.; Chu, H. et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat. Med. 2020, 26, 1077–1083.

26

Hui, K. P. Y.; Cheung, M. C.; Perera, R. A. P. M.; Ng, K. C.; Bui, C. H. T.; Ho, J. C. W.; Ng, M. M. T.; Kuok, D. I. T.; Shih, K. C.; Tsao, S. W. et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: An analysis in ex-vivo and in-vitro cultures. Lancet Respir. Med. 2020, 8, 687–695.

27
World Health Organization. Antigen-Detection in the Diagnosis of SARS-CoV-2 Infection [Online]. https://www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-sars-cov-2infection-using-rapid-immunoassays.
28

Kim, H. Y.; Lee, J. H.; Kim, M. J.; Park, S. C.; Choi, M.; Lee, W.; Ku, K. B.; Kim, B. T.; Changkyun Park, E.; Kim, H. G. et al. Development of a SARS-CoV-2-specific biosensor for antigen detection using scFv-Fc fusion proteins. Biosens. Bioelectron. 2021, 175, 112868.

29

Lee, J. H.; Choi, M.; Jung, Y.; Lee, S. K.; Lee, C. S.; Kim, J.; Kim, J.; Kim, N. H.; Kim, B. T.; Kim. H. G. A novel rapid detection for SARS-CoV-2 spike 1 antigens using human angiotensin converting enzyme 2 (ACE2). Biosens. Bioelectron. 2021, 171, 112715.

30

Zhang, L. Y.; Fang, X. N.; Liu, X. B.; Ou, H. C.; Zhang, H. Y.; Wang, J. J.; Li, Q.; Cheng, H. Y.; Zhang, W. Y.; Luo, Z. F. Discovery of sandwich type COVID-19 nucleocapsid protein DNA aptamers. Chem. Commun. 2020, 56, 10235–10238.

31

Lin, Q. Y.; Wen, D. H.; Wu, J.; Liu, L. L.; Wu, W. J.; Fang, X. E.; Kong, J. L. Microfluidic immunoassays for sensitive and simultaneous detection of IgG/IgM/antigen of SARS-CoV-2 within 15 min. Anal. Chem. 2020, 92, 9454–9458.

32

Guo, J. C.; Chen, S. Q.; Tian, S. L.; Liu, K.; Ni, J.; Zhao, M.; Kang, Y. J.; Ma, X.; Guo, J. H. 5G-enabled ultra-sensitive fluorescence sensor for proactive prognosis of COVID-19. Biosens. Bioelectron. 2021, 181, 113160.

33

Grant, B. D.; Anderson, C. E.; Williford, J. R.; Alonzo, L. F.; Glukhova, V. A.; Boyle, D. S.; Weigl, B. H.; Nichols, K. P. SARS-CoV-2 coronavirus nucleocapsid antigen-detecting half-strip lateral flow assay toward the development of point of care tests using commercially available reagents. Anal. Chem. 2020, 92, 11305–11309.

34

Liu, D.; Ju, C. H.; Han, C.; Shi, R.; Chen, X. H.; Duan, D. M.; Yan, J. H.; Yan, X. Y. Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen. Biosens. Bioelectron. 2021, 173, 112817.

35

Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G. S.; Qu, C. R.; Diao, S.; Deng, Z. X.; Hu, X. M.; Zhang, B. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 2016, 15, 235–242.

36

Hong, G. S.; Diao, S.; Chang, J. L.; Antaris, A. L.; Chen, C. X.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. et al. Through-skull fluorescence imaging of the brain in a new nearinfrared window. Nat. Photonics 2014, 8, 723–730.

37

Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780.

38

Kenry; Duan, Y. K.; Liu, B. Recent advances of optical imaging in the second near-infrared window. Adv. Mater. 2018, 30, 1802394.

39
Chang, B. S. ; Li, D. F. ; Ren, Y. ; Qu, C. R. ; Shi, X. J. ; Liu, R. Q. ; Liu, H. G. ; Tian, J. ; Hu, Z. H. ; Sun, T. L. et al. A phosphorescent probe for in vivo imaging in the second near-infrared window. Nat. Biomed. Eng., in press, https://doi.org/10.1038/s41551-021-00773-2.
40

Zhu, S. J.; Tian, R.; Antaris, A. L.; Chen, X. Y.; Dai, H. J. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater. 2019, 31, e1900321.

41

Hong, G. S.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L. M.; Huang, N. F.; Cooke, J. P.; Dai, H. J. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 2012, 18, 1841–1846.

42

Zhang, C. Y.; Zhou, L.; Du, K.; Zhang, Y.; Wang, J.; Chen, L. J.; Lyu, Y. N.; Li, J.; Liu, H.; Huo, J. L. et al. Foundation and clinical evaluation of a new method for detecting SARS-CoV-2 antigen by fluorescent microsphere immunochromatography. Front. Cell Infect. Microbiol. 2020, 10, 553837.

43

Wang, C. W.; Yang, X. S.; Zheng, S.; Cheng, X. D.; Xiao, R.; Li, Q. J.; Wang, W. Q.; Liu, X. X.; Wang, S. Q. Development of an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobead for simultaneous detection of SARS-CoV-2 antigen and influenza a virus. Sens. Actuators B Chem. 2021, 345, 130372.

Nano Research
Pages 7313-7319
Cite this article:
Hu R, Liao T, Ren Y, et al. Sensitively detecting antigen of SARS-CoV-2 by NIR-II fluorescent nanoparticles. Nano Research, 2022, 15(8): 7313-7319. https://doi.org/10.1007/s12274-022-4351-1
Topics:

1162

Views

26

Crossref

26

Web of Science

25

Scopus

2

CSCD

Altmetrics

Received: 06 February 2022
Revised: 19 March 2022
Accepted: 22 March 2022
Published: 10 May 2022
© Tsinghua University Press 2022
Return